

 Equation Chapter 1 Section 1

USING UPPER LAYER WEIGHTS TO
EFFICIENTLY CONSTRUCT AND TRAIN
FEEDFORWARD NEURAL NETWORKS

EXECUTING BACKPROPAGATION

THESIS

Harmon J.A. Gage, Second Lieutenant, USAF

AFIT-OR-MS-ENS-11-06

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT-OR-MS-ENS-11-06

USING UPPER LAYER WEIGHTS TO EFFICIENTLY CONSTRUCT AND TRAIN
FEEDFORWARD NEURAL NETWORKS EXECUTING BACKPROPAGATION

THESIS

Presented to the Faculty

Department of Operational Sciences

 Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

 Air Education and Training Command

 In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Harmon J.A. Gage, BS

Second Lieutenant, USAF

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-OR-MS-ENS-11-06

 USING UPPER LAYER WEIGHTS TO EFFICIENTLY CONSTRUCT AND TRAIN
FEEDFORWARD NEURAL NETWORKS EXECUTING BACKPROPAGATION

Harmon J. A. Gage, BS
Second Lieutenant, USAF

 Approved:

 __//Signed___________________________ 16 MAR 2011 ___
 Dr. Kenneth. W. Bauer (Chairman) date

 __//Signed___________________________ 16 MAR 2011 ___
 Dr. John Miller (Reader) date

iv

AFIT-OR-MS-ENS-11-06

Abstract

Feed-forward neural networks (FFNN) executing back propagation are a common

tool for regression and pattern recognition problems. These types of neural networks can

adjust themselves to data without any prior knowledge of the input data. FFNNs with a

hidden layer can approximate any function with arbitrary accuracy.

In this research, the upper layer weights of neural networks are used to determine

an effective middle layer structure and when to terminate training. By combining these

two techniques with signal-to-noise ratio feature selection, a process is created to

construct an efficient neural network structure. The results of this research show that for

data sets tested thus far, these methods yield efficient neural network structure in minimal

training time. Data sets used include an XOR data set, Fisher’s iris data set, and a

financial industry data set, among others.

v

AFIT-OR-MS-ENS-11-06

Dedication

Dedicated to all those who have been a part of my education

vi

Acknowledgments

There are many people I would like to acknowledge for allowing me to

successfully complete this research. First, I would like to express my gratitude to my

advisor, Dr. Kenneth Bauer, for guiding me through the research process and sharing

some of his vast knowledge with me along the way. Without him, this effort would not

have come together. I would also like to thank my reader, Dr. John Miller, for his

feedback and support.

Next, I would like to give a special thanks to Capt Jason Williams for being an

honorary member of my committee and for answering all my questions during the

research process. He and Capt Ben Hartlage taught me that sometimes the answers to

life’s most difficult questions are efficiently stacked inside the Joe Price memorial fridge.

Further, I thank my family and my previous educators who have brought me to

this point in my academic career. My parents always pushed me to pursue further

education and provided me reassurance when I doubted what I was doing along the way.

For this reason, I believe the accomplishment of this thesis was not started at AFIT, but at

a very young age.

Also, I would like to thank Lt Col Brian Ralston, my USAFA academic advisor,

for pushing me to pursue my Master’s degree as soon as possible.

There are surely others who I have failed to mention, but know that I am grateful

to everyone who has been a positive influence on my life throughout this process. You

make it all worth it.

 -Harmon J.A. Gage

vii

Table of Contents
Page

ABSTRACT ... IV

DEDICATION ... V

ACKNOWLEDGMENTS ... VI

LIST OF FIGURES .. IX

LIST OF TABLES .. XI

1. INTRODUCTION .. 1

1.1. BACKGROUND .. 1
1.2. PROBLEM STATEMENT ... 3
1.3. RESEARCH OBJECTIVES .. 3

2. LITERATURE REVIEW ... 5

2.1. DEFINITIONS .. 5
2.2. FEED-FORWARD NEURAL NETWORK .. 6
2.3. BACKPROPAGATION .. 8
2.4. CONSTRUCTIVE AND PRUNING ALGORITHMS .. 10

2.4.1. Upper bound on hidden nodes for pruning algorithms .. 12
2.4.2. Lower bound on hidden nodes for constructive algorithms ... 13

2.5. EMPIRICAL FORMULAS... 14
2.6. TERMINATING TRAINING .. 15

2.6.1. Generalization Loss Threshold... 16
2.7. FEATURE SELECTION.. 17

2.7.1. Likelihood ratio test statistics .. 17
2.7.2. Weight Based Saliency Measures .. 18
2.7.3. Signal to Noise Ratio (SNR) Saliency measure ... 19
2.7.4. Other Methods .. 21

2.8. GENERAL ENSEMBLE METHOD .. 22
2.8.1. Introduction ... 22

3. METHODOLOGY .. 23

3.1. INTRODUCTION .. 23
3.2. EFFICIENT STRUCTURE USING UPPER LAYER WEIGHTS ... 23

3.2.1. Sum of Squared Weights (SSW) ... 24
3.2.2. Mean Sum of Squared Weights (MSSW) ... 24
3.2.3. MSSW Method .. 25

3.3. SUFFICIENTLY TRAINING AN ANN .. 27
3.3.1. Sum of Weights ... 28
3.3.2. Incremental Change in Sum of Weights .. 28
3.3.3. Percentage Change in Sum of Weights ... 29
3.3.4. Threshold stopping criterion ... 29

3.4. COMBINING STRUCTURE SELECTION, FEATURE SELECTION, AND TRAINING TERMINATION METHODS 30

4. RESULTS .. 32

4.1. INTRODUCTION .. 32
4.2. MEAN SUM OF SQUARED WEIGHTS (MSSW) ... 32

4.2.1. XOR Problem ... 32

viii

Page
4.2.2. Body Fat Data Set .. 35
4.2.3. Finance Industry Data Set .. 38
4.2.4. Hot Dog Data Set ... 41
4.2.5. Summary ... 44

4.3. SUFFICIENTLY TRAINING A NEURAL NETWORK .. 44
4.3.1. Introduction ... 44
4.3.2. XOR Data Set/Discussion of Data Analysis .. 45
4.3.4. Finance Data Set .. 52
4.3.5. Hot Dog Data Set ... 55
4.3.6. Body Fat Data Set .. 56
4.3.7. Summary ... 59

4.4. REGRESSION EQUATION FOR STOPPING TRAINING... 60
4.4.1. Introduction ... 60

4.5. COMBINING METHODS .. 60
4.5.1. Introduction ... 60
4.5.2. Metrics Used.. 61
4.5.3. Fisher’s Iris Data Set .. 61
4.5.4. Body Fat Data Set .. 68
4.5.5. Finance Data Set .. 70
4.5.6. Hot Dog Data Set ... 71
4.5.7. Summary ... 73

4.6. GENERALIZED ENSEMBLE METHOD .. 74
4.6.1. Introduction ... 74
4.6.2. GEM Application .. 74

5. CONCLUSION/FUTURE WORK ... 76

5.1. CONCLUSION ... 76
5.2. FUTURE WORK .. 77

APPENDIX A. .. 78

% CHNG Regression Results ... 79
Training Epoch Stopped Regression Results .. 80

APPENDIX B. BLUE DART .. 83

APPENDIX C. STORY BOARD ... 84

BIBLIOGRAPHY ... 85

VITA ... 89

ix

List of Figures
Page

Figure 2-1 Single Hidden Layer Feedforward Neural Network (Caudill & Butler, 1992) 7

Figure 2-2 Theoretical vs Real World Validation Error ... 16

Figure 3-1 MSSW Example Graphs ... 27

Figure 3-2 Combining Methods .. 31

Figure 4-1 XOR Problem MSSW ... 33

Figure 4-2 XOR Problem Accuracy ... 34

Figure 4-3 Body Fat Problem MSSW ... 36

Figure 4-4 Body Fat Problem – Accuracy .. 37

Figure 4-5 Finance Data MSSW ... 39

Figure 4-6 Finance Data Accuracy ... 40

Figure 4-7 Hot Dog MSSW .. 42

Figure 4-8 Hot Dog Accuracy... 43

Figure 4-9 XOR Data Weight Values ... 46

Figure 4-10 XOR Data Sum of Weights ... 47

Figure 4-11 Average Sum of Weights .. 47

Figure 4-12 XOR Incremental Weight Change .. 48

Figure 4-13 XOR Data %CHNG .. 50

Figure 4-14 Finance Data - Total Sum of Weights During Training 53

Figure 4-15 Finance Data - Incremental Change in Sum of Weights 53

Figure 4-16 Finance Data - % Change in Sum of Weights ... 54

Figure 4-17 Hot Dog Sum of Weights .. 55

Figure 4-18 Body Fat Data %CHNG vs. Accuracy .. 57

Figure 4-19 Body Fat Data Moving Average ... 58

Figure 4-20 Iris Data all Features ... 62

Figure 4-21 Iris Data All Features- 2 Middle Neurons ... 63

Figure 4-22 Iris Data- Feature 1 Removed ... 64

Figure 4-23 Iris Data- Feature 1&2 Removed .. 65

Figure 4-24 Iris Data- 1, 2& 3 Removed .. 66

Figure 4-25 Iris SNR Validation Error ... 67

x

Page

Figure 4-26 Body Fat Data – Combined Method ... 69

Figure 4-27 Finance Data – Combined Method vs. Other Heuristics 71

Figure 4-28 Hot Dog Data – Combined Method vs. Other Heuristics 72

xi

List of Tables
Page

Table 4-1 XOR MSSW vs. Empirical Heuristics ... 35

Table 4-2 Body Fat MSSW vs. Empirical Heuristics ... 38

Table 4-3 Finance Data MSSW vs. Empirical Heuristics ... 41

Table 4-4 Hot Dog MSSW vs. Empirical Heuristics .. 44

Table 4-5 XOR Data Visual Incremental Truncation Accuracy 49

Table 4-6 XOR Data % CHNG Threshold Truncation Results .. 51

Table 4-7 Finance Problem – Threshold Stopping Criterion Result 54

Table 4-8 Hot Dog Data Training ... 56

Table 4-9 Body Fat Data Terminating Criterion ... 58

Table 4-10 Combined Methods Summary – Iris Data .. 67

Table 4-11 Cascade Correlation Method – Iris Data .. 68

Table 4-12 Body Fat Data Combined Method vs. Other Heuristics 69

Table 4-13 Combined Methods Summary – Finance Data ... 70

Table 4-14 Combined Methods Comparison – Finance Data ... 71

Table 4-15 Combined Methods Summary – Hot Dog Data ... 72

Table 4-16 Combined Method vs. Other Heuristics – Hot Dog Data 73

Table 4-17 GEM Application ... 75

1

USING UPPER LAYER WEIGHTS TO EFFICIENTLY CONSTRUCT AND TRAIN

FEEDFORWARD NEURAL NETWORKS EXECUTING BACKPROPAGATION

1. Introduction

1.1. Background

In general, the size of a neural network directly affects both network complexity

and learning time. The size of the network also impacts the ANN’s ability to operate

effectively with data not contained in the training set (Bebis & Georgiopoulos, 1994).

Bebis & Georgiopoulos compare the process of determining the correct number of hidden

nodes to curve fitting a set of data points. If the curve is a high-order polynomial and

intersects every point in the data set, the curve likely will not be accurate when

introduced to new data. On the other hand, if a curve does not fit the training set with

moderate success it likely will not be accurate when introduced to new data either.

Finding a balance between these two scenarios is, for lack of a better term, an art.

Determining the number of hidden nodes acts in a similar fashion. Too many neurons

and the network will over-learn data, also known as over-training, but too few neurons

will not provide an ideal model either (Kavzoglu, 1999). Many have researched the

problem of determining the “best” number of hidden neurons. The different approaches

can be split into five categories: constructive algorithms, pruning algorithms, trial and

error, empirical formulas, and hybrid methods. Constructive algorithms start training a

network with a small number of middle layer nodes and add structure as necessary.

Pruning algorithms start training a network with an overly large number of middle layer

2

nodes and prune them off. Trial-and-error requires no structured thought to how or why a

given number of hidden neurons are used. Empirical formulas are self explanatory in that

they determine the number of hidden nodes with a formula. These formulas usually

incorporate the data set of interest’s number of variables and classes. Hybrid techniques

use a combination of constructive and pruning algorithms along with other methods such

as genetic algorithms and singular value decomposition (Ileana, Rotar, & Incze, 2004)

(Teoh, C, & Xiang, 2006).

 Selecting the correct number of hidden layer nodes for a neural network is not the

only work concerning the structure of neural networks that has been conducted. Several

researchers have investigated ways of selecting which inputs are important to the

classification process. This is known as feature selection. An approach introduced by

Bauer, Alsing, & Greene, uses signal-to-noise ratios (SNR) to accomplish feature

selection (Bauer, Alsing, & Greene, 2000). The approach using SNR is the motivation

behind the research in this paper. The SNR method, discussed in more detail in section

2.7.3, gathers data from the lower layer weights. This information is used to determine

which features are actually important. The work in this research is an analysis of the

upper layer weights, which connect the middle layer neurons to the outputs.

 The upper layer weights of a network can also be analyzed to gain an

understanding of when a network is sufficiently trained. When to terminate training is an

open problem. If a network is trained for too few epochs, the network is not able to

succesfully classify data. If a network is trained for too many epochs, time is wasted

during the training process. In this research, the upper layer weights of a network are

evaluated to gain insight regarding the progress of training.

3

 Combining the insight upper layer weights provide regarding structure size and

training status of a neural network with SNR feature selection provides the building

blocks of a process to train a succesful, efficient neural network structure.

1.2. Problem Statement

There are many methods for determining the best number of hidden nodes for a

multi-layer neural network. Currently, however, there has not been much effort to

analyze upper layer weights to accomplish this during the training process of a network.

This research will introduce an approach to determine an efficient number of hidden

nodes in a multi-layer feed forward neural network. The upper layer weights should

provide information regarding the quality of neural networks being used and the progress

of the training process. Selecting a middle layer structure, terminating training, and

removing non-salient features (via the SNR method) are all necessary to build a

successful network structure. A successful neural network not only learns the data it is

trained with, but can also generalize well. An iterative, structured process to construct a

neural network that generalizes well would be a useful tool to minimize time

experimenting with neural network attributes.

1.3.Research Objectives

The focus of this effort is to construct quality neural networks using upper layer

weights. In particular, the correct middle layer structure is of interest. After arriving at a

method of determining an “efficient” number of hidden layer nodes, the method will be

compared to a current constructive algorithm and empirical formulas. The objective is to

provide a method regarding training that is efficient and avoids over learning the data.

4

The culmination of this work will be to combine these methods with SNR feature

selection to build a structured process to follow in selecting an efficient, successful neural

network in a timely manner. A fusion technique will also be introduced to yield the best

possible results.

5

2. Literature Review

This chapter contains definitions of common neural network terms, an

explanation of multi-layer perceptrons, back propagation, discussion of current methods

to determine neural network structure, pruning/constructive algorithms, and a discussion

of feature selection techniques. The feature selection techniques are included, because

these techniques can be adapted to hidden layer structure selection as well.

2.1. Definitions

Back-propagation method: A learning algorithm for updating weights in feed forward

neural network that minimizes mean squared mapping error. (Svozil, Kvasnicka, & Jiri,

1997)

Constructive Algorithms: Process that begins with a small number of hidden neurons,

trains the network, before adding hidden neurons as necessary prior to retraining.

Epoch: A complete set of data used in the training of a neural network after one full

cycle; also known as a training cycle. (Steppe J. M., 1994)

Exemplar: One observation of data input into a neural network. Contain one value for

each feature.

Feature: The individual entries found in exemplars. They contain information that can

prove helpful in classifying exemplars. In other fields, features are known as attributes

and independent variables. (Steppe J. M., 1994)

Feed-Forward: A network in which each node in a given layer is forward connected to

every node in the next layer. (Steppe J. M., 1994)

Hidden layer: A layer of neurons located between the input layer and the output layer.

6

Hidden neurons: In a multi-layer network these are the neurons that are present in the

“hidden layers”. In other words, any neuron that is not an input neuron or an output

neuron is a hidden neuron. (Steppe J. M., 1994)

Hybrid techniques: A combination of constructive & pruning algorithms along with

other methods (such as genetic algorithms and singular value decomposition) used to

determine the best number of hidden layer neurons. (Steppe J. M., 1994)

Multilayer Perceptron: A multilayer feed-forward network that is fully connected. Any

neuron in a given layer is connected to every neuron in the next layer. They are the most

widely used and studied neural network classifiers. (Zhang, Jiang, Liu, Liang, & Yu,

1997)

Neural Network: An important statistical tool for classification. They can adjust

themselves to data without any prior knowledge of the input data. They can approximate

any function with arbitrary accuracy. (Zhang G. P., 2000)

Pruning Algorithm: Process that starts training with a larger than necessary number of

hidden neurons, remove the neurons that are not needed, and retrain until success is

obtained. (Reed, 1993)

2.2. Feed-Forward Neural Network

Feed-forward neural networks are generally used in two types of applications.

They are used to estimate a linear or nonlinear function for prediction in regression

analysis and to estimate a linear or nonlinear discriminant function for classification in

discriminant analysis (Steppe J. M., 1994)

7

As stated in the definitions, a multi-layer perceptron (MLP) is a multilayer feed-

forward network that is fully connected. This research will specifically involve multi-

layer perceptrons.

Figure 2-1 Single Hidden Layer Feedforward Neural Network (Caudill & Butler, 1992)

Figure 2-1 displays that neurons residing in different layers are connected by

weighted synapses. The input layer contains a number of neurons that corresponds to the

number of inputs for any/all exemplars in the data set. Normalized feature input data is

passed through the input layer. This data can be the raw data or some

transformation/projection of it.

 The hidden layer nodes have a linear or nonlinear activation function. Linear

functions are generally used for regression analysis and nonlinear for discriminant

analysis. The functions receive weighted variations of the input data. The specific

activation function used in this research is discussed in section 2.3. After passing through

8

the activation function, the output again “travels” along weighted synapses toward the

output nodes.

 The output layer nodes also have linear or nonlinear activation functions (again

depending on the application). Just like the hidden layer, linear activation functions are

generally used for function approximation and nonlinear functions for discriminant

function applications (Steppe J. M., 1994).

2.3. Backpropagation

As stated previously, multi-layer perceptrons (MLPs) are the most popular neural

networks. MLPs all execute the backpropagation algorithm. Lippmann explains the

backpropagation training algorithm as “an iterative gradient algorithm designed to

minimize the mean square error between the actual output of a multilayer feed-forward

perceptron and the desired output” (Lippmann, 1987). The actual instantaneous

backpropagation algorithm is available below (Steppe J. M., 1994). This is an

instantaneous algorithm, because the weights are updated after each exemplar is

introduced to the network. Another version of backpropagation waits until an entire

epoch is complete before calculating the error gradient.

The Instantaneous Backpropagation Algorithm
for a

Single Hidden Layer Feedforward Neural Network.
1. Randomly partition data into training, training-test, and validation sets.
2. Normalize the feature input data.
3. Initialize weights to small random values.
4. Present the network with a randomly selected vector from the training set, denoted xp
5. Calculate the network output zp associated with the pth training vector

• kth neural network output: 2 1

0
()

H
p
k jk j

j
z f w x

=

= ∑ , where

- H is the number of middle nodes

9

- () 1/ (1)f e αα −= + for sigmoidal activation function
- ()f α α= for linear activation functions
- 2

jkw is the weight from middle node j to output node k
- 1

0x is the middle layer bias term and is set equal to 1

- 1 1
0

()M p
j ij ii

x f w x
=

= ∑ is the output of middle node j
- M is the number of feature inputs (input neurons)
- 1

ijw is the weight from input node i to middle node j
- 0

px is the input layer bias term, and is equal to 1
- p

ix is the ith feature input
6. Update the weights

• Output layer weights: 2 2 2 1() ()jk jk k jw w xηδ+ −= + ,
• Input layer weights: 1 1 2() () p

ij ij j iw w xηδ+ −= + ,where
- 2()jkw + is the updated weight from middle node j to output k
- 2()jkw − is the old weight from the middle node j to output k
- 1()ijw + is the updated weight from input i to middle node j
- 1()ijw − is the old weight from input i to middle node j
- η is the step size
- 2 () (1)p p p p

k k k k kd z z zδ = − − if there is a sigmoid on the output
- 2 ()p p

k k kd zδ = − if the output is linear

- 1 1 1 2 2

1
(1) ()

K

j j j k jk
k

x x wδ δ −

=

= − ∑ if there is a sigmoid on the middle node j

- 1 2 2

1
()

K

j k jk
k

wδ δ −

=

=∑ , if middle node j is linear

- p
kd is the kth desired output of the pth exemplar

7. If training-test set error does not indicate sufficient convergence, go to step 4.

This algorithm is called the back-propagation algorithm, because the output error

propagates from the output layer through the hidden layers to the input later (Svozil,

Kvasnicka, & Jiri, 1997).

 Step 1 randomly divides the problem data into a training data set and a validation

set. Training data is used to create weight parameters within the model. The validation

10

data is used to evaluate the neural network’s ability to generalize (work accurately on

data it has not seen before).

Step 2 normalizes the data in both the validation and training sets.

Step 3 initializes weight parameters randomly between -.1 and .1. This is the

interval used in this research, but it is by no means a concrete rule.

Step 4 introduces a randomly selected vector xp to the neural network. p

designates the pth vector x in the training set.

Step 5 calculates the vector of network outputs. The sigmoidal activation

function () 1/ (1)f e αα −= + , known as a squashing function, is used because its derivative

is continuous and makes the weight update rule simple for the backpropagation training

(Steppe J. M., 1994). Also, previous work by (Cybenko, 1988) shows that a multi-layer

neural network executing backpropagation with linear output nodes is capable of

arbitrarily accurate approximations for any arbitrary function given a sufficient amount of

hidden nodes are used with a sigmoidal activation function. The topic of “sufficient

amount of hidden nodes” is a focus of this research.

Step 6 calculates the instantaneous output error of the neural network. The step

size, η , can be a constant or a variable. White proposes that a constant learning rate is

not efficient since randomness in the input, such as noise, causes fluctuations in the

weight vector. This prevents backpropagation from converging to an optimal weight

vector (White, 1993).

2.4.Constructive and Pruning Algorithms

11

Constructive algorithms and pruning algorithms are closely related. A

constructive algorithm begins with a small number of hidden neurons and trains the

network. Following a training cycle, a neuron is added to the hidden layer and the

network is trained again. This process is repeated until performance is satisfactory

(Frean, 1990). Pruning algorithms are essentially the opposite of constructive algorithms.

Their approach is to train a network with a larger than necessary number of hidden

neurons, remove the neurons that are not needed, and retrain until success is obtained

(Reed, 1993). Success is defined by the user. As mentioned earlier there is a trade-off

between minimizing error in the neural network and maintaining the network’s ability to

be a successful general model.

Steppe, Bauer, and Rodgers introduced a pruning type algorithm for hidden

neuron selection using the likelihood ratio test statistic (Steppe, Bauer, & Rogers, 1996).

This same algorithm is utilized by Belue, Steppe, & Bauer and Kocur, et al. (Belue,

Steppe, & Bauer, April 1996) (Kocur, et al., 1996). Bacauskiene and Verikas introduce a

feature selection procedure which performs a pruning type algorithm using multiple

neural networks and eventually committees (multiple sets of neural networks used for

classification) (Verikas & Bacauskiene, 2002) (Bacauskine & Verikas, 2004).

Two succesful constructive algorithms include Upstart algorithm and the Cascade

Correlation algorithm.

 The Upstart algorithm adds middle layer nodes if the current middle layer

structure causes the network to get stuck in a local minimum when trying to minimize

error. If the current structure gets “stuck”, two more nodes are added (Frean, 1990).

This algorithm is very succesful when attempting to solve binary problems as it is

12

guaranteed to eventually classify each point correctly. However, this algorithm can lead

to overlearning of the data. Fanguy & Kubat introduce modifications to the Upstart

algorithm that allow it to solve multiclass problems (Fanguy & Kubat, 2002).

The Cascade Correlation algorithm also constructs a network structure without

the use of backpropagation or error signals. Hidden units are added to the network one

by one. Once training epochs no longer create a significant reduction in error, a new

hidden neuron is added. Next, the input weights are altered to correlate the output of the

hidden nodes with the network’s output error. Once this is done, the whole network is

retrained and the process is repeated until the total error is below a certain threshold

(Fahlman & Lebiere, 1990). This process has proven succesful for real valued mappings

(Bebis & Georgiopoulos, 1994). Yang & Honavar publish a paper with Cascade

Correlation experiments including performance for Fisher’s Iris data set. Results for the

iris data from this work are compared to the Cascade Correlation results in 4.5.3.

 The constructive algorithm proposed in this research follows similar logic to the

Upstart and Cascade Correlation algorithms. However, instead of observing the error

during training, the upper layer weights are observed to determine when enough structure

is present.

2.4.1. Upper bound on hidden nodes for pruning algorithms

Huang and Babri proved that the number of hidden nodes for a neural network

with a non-linear activation function should never be larger than the number of input

samples (exemplars) (Huang & Babri, 1998). However, if the number of exemplars is

excessive, the computational complexity of determining the correct sized ANN increases.

13

Other work provides a tighter bound on the number of hidden nodes provided some

conditions are met. Cover introduces a rule based on separating capacities of families of

nonlinear decision surfaces (Cover, 1965). He shows that a family of surfaces having s

degrees of freedom has a natural separating capacity for 2s training exemplars. Unless

there a more than 2s exemplars, vague generalization is likely. Cover’s theorem gives the

following upper bound on the number of middle nodes:

.5 1
1

PH
M

−
<

+
 (Cover, 1965)

where P is the number of exemplars and M is the number of features. If the number of

features is large and the number of exemplars is small, Cover’s theorem could suggest

fewer middle nodes than are required for the complexity of the problem. Cover’s

theorem’s upper bound is often overly conservative and can call for more middle nodes

than necessary. For this research, the middle layer structures tested are not bigger than

Cover’s criterion. We use Cover’s theorem because it gives the largest cardinality of a

set of training vectors such that any possible class assignment of the vectors can be

implemented with probability one (Steppe, Bauer, & Rogers, 1996). Vapnkik and

Cherconenkis (Vapnik & Chervonenkis, 1971), Baum and Haussler (Baum & Haussler,

1989), and Sontag (Sontag, 1992) provide other heuristics.

2.4.2. Lower bound on hidden nodes for constructive algorithms

The lower bound on hidden nodes for a constructive algorithm is normally one

neuron (Sartori & Antsaklis, 1991) (Parekh, Yang, & Honavar, 2000). There are cases

when 1 middle neuron is not sufficient in separating data, but this structure size is tested

on each data set in this research.

14

2.5. Empirical Formulas

There are a few empirical formulas that are suggested as good heuristics to

determine the “best” number of hidden nodes for a given data set. These formulas

include, but are not limited to, the formulas listed in this section.

The following formulas refer to different neurons of the network structure as:

Hidden layer neurons: M

Input layer neurons: K

Outer layer neurons: J

Formula 1: According to the Kolmogorov theorem

2* 1M K= + (Kurkova, 1992)

Formula 2: Lippmann believes the number of hidden nodes should be

*M J K= (Lippmann, 1987)

when the number of inputs is larger than the outputs.

Formula 3: Zhang has determined the range of M as

*M J K c= + (Zhang, Jiang, Liu, Liang, & Yu, 1997)

Where c is some constant between 1 and 10

Formula 4: Daqi and Shouyi determined the best number of hidden neurons is

*(2) 1M K J= + + (Daqi & Shouyi, 1998)

Formula 5:

0

J

i

M
P

i=

 
> 

 
∑

If i>M, 0
M
i

 
= 

 

15

Where P is the number of patterns or separable regions in the data (Mirchandani & Cao,

1989)

Formula 6: Gormon determined the best number of hidden neurons as

2logM P= (Gorman & Sejnowski, 1988)

Gao, Chen and Qin introduced a method of using each of these empirical formulas

and to create a lower and upper bound that contains the best possible middle layer size

(Gao, Chen, & Qin, 2010).

2.6. Terminating Training

When to terminate training is an open problem. Since the algorithm used in feed-

forward neural nets attempts to minimize mean square error, many training termination

heuristics involve the mean square error of the validation set. The validation error is said

to mimic the generalization error of a network. Prechelt provides a simple algorithm to

terminate training:

1. Split the training data into a training set and a validation set, e.g. in a 2-to-1
proportion.

2. Train only on the training set and evaluate the per-example error on the validation
set once in a while, e.g. after every fifth epoch.

3. Stop training as soon as the error on the validation set is higher than it was the last
time it was checked.

4. Use the weights the network had in that previous step as the result of the training
run.

Prechelt continues on and discusses that this type of algorithm can result in premature

termination.

16

Figure 2-2 Theoretical vs Real World Validation Error

 (Prechelt, 1998)

Figure 2-2 displays two separate graphs. For each graph, the horizontal axis

represents training epochs and the vertical axis represents error. The graph on the left

displays what validation error looks like in a perfect scenario. The graph on the right

displays what validation error can actually look like (Prechelt, 1998). The scenario

displayed in the graph on the right is much more likely to occur. Since this is the case,

other stopping criteria have been developed. These types of stopping criterion include

but are not limited to generalization loss threshold criterion, quotient of generalization

loss and progress, and generalization increase over a given number of successive epochs.

Prechelt tested these three methods and determined that the generalization loss method

has the highest probability of providing “good” results.

2.6.1. Generalization Loss Threshold

 ()optE t is defined as the lowest validation set error obtained in epochs up to t.

min
'() : (')opt t t vaE t E t≤=

17

The generalization at epoch t is the relative increase of the validation error over

so far:

()() 100* 1
()

va

opt

E tGL t
E t

 
= −  

 

With the GL(t) value, the following stopping criterion is used:

GLα: stop after first epoch t with GL(t)>α (Prechelt, 1998)

α is determined by the user. The reasoning behind this method is over fitting does not

occur until error decreases slowly.

Instead of focusing on the validation error during training, this research will

observe the activity of the upper layer weights to determine a termination point. The

developed method will be compared to the generalization loss threshold stopping

criterion.

2.7. Feature Selection

This section details different approaches used for feature selection, which can be

thought of as a special case of architecture selection (Bacauskine & Verikas, 2004).

Methods discussed include algorithms utilizing likelihood ratio test statistics and others

using signal to noise ratios. The work done in feature selection, specifically the SNR

saliency measure methods discussed in 2.6.3, is included because the application of these

methodologies to hidden layer neurons is utilized in this research.

2.7.1. Likelihood ratio test statistics

Steppe, Bauer, and Rogers use likelihood ratio tests as part of a pruning algorithm

and also use the same test statistic for feature selection. The likelihood test statistic is:

18

R F

R F

F

F

SSE SSE
df dfL SSE

df

−
−

= (Steppe, Bauer, & Rogers, 1996)

where F indicates the full model and R indicates the reduced model. The reduced

model(s) possesses some combination of k-1 features where k features exist in the full

model. The computational complexity of using this test statistic to determine the correct

number of hidden layer nodes is much easier than feature selection. This holds true,

because all combinations of k-1 features must be tested when one feature is being

removed whereas the number of hidden nodes is simply decreased by one to test a

smaller hidden layer structure.

2.7.2. Weight Based Saliency Measures

This section contains information regarding weight based saliency measures.

They are of particular interest, because they are a building block for SNR saliency

measures (discussed in 2.7.2). Previously developed feature screening methods based on

saliency measures, such as the Belue-Bauer screening method and the Steppe-Bauer

screening method, utilize a partial derivative based saliency measure and a weight based

saliency measure (Belue & Bauer, 1995) (Steppe & Bauer, 1996). A weight based

saliency measure, introduced by Tarr, is:

1 2
,

1
()

J

i i j
j

wτ
=

=∑ (Tarr, 1991)

This measure determines the saliency of a feature by summing the squared values of the

weights connecting feature i to the hidden nodes j. The superscript 1 indicates the weight

is the first layer weight from node i to node j. This statistic is used because a square of

19

the first layer weights in a salient feature will be significantly larger than a non-salient

feature in an ANN.

2.7.3. Signal to Noise Ratio (SNR) Saliency measure

SNR Saliency measures are used to determine the relative value of features and

provide an ability to rank features in order of importance (Ubeyli, 2008). The SNR

saliency measure and the weight based saliency measure are similar in that they sum the

squares of the first layer weights. However, the SNR saliency measure introduces an

injected noise feature for comparison:

1 2
,

1
10

1 2
,

1

()
10log

()

J

i j
j

i J

N j
j

w
SNR

w

=

=

 
 
 =
 
 
 

∑

∑

SNRi is the SNR saliency measure for feature i and 1
,N jw is the first layer weight from

noise node N to node j. J is the number of hidden nodes. The weights involving noise

features are initialized and updated in the same way that weights from other features in

the first layer are. Noise is injected with values that follow a Uniform(0,1) distribution.

Further, the scaled logarithmic transformation of the ratio converts the saliency measure

to a decibel scale (Ubeyli, 2008). Again, similar to the weight based saliency measure,

the SNR saliency measure can be used to rank order the saliency of features where higher

SNR saliency measure values correspond to higher feature saliency. The reasoning

behind this SNR saliency measure is a relevant feature should have first layer weights

emanating from it moving in a constant direction, as the ANN retrains, until the error is

minimized. On the contrary, if a feature is not significant, the updates to the weights

20

emanating from a feature’s input node should be random and tend towards zero. With

this idea, salient features should have a SNR saliency measure larger than 0 whereas non-

salient features’ SNR saliency measures should be close to or less than 0.0 (Bauer,

Alsing, & Greene, 2000).

Belue & Bauer use a modified version of Tarr’s saliency measure for feature

screening to construct a model that reduces/eliminates non-salient features while

maintaining generalization. Bauer, Alsing, and Greene’s updated SNR feature selection

method accomplishes this in a single training run with the SNR saliency measure and is

summarized below (Bauer, Alsing, & Greene, 2000):

1. Introduce a Uniform (0, 1) noise feature xN to the original set of features.
2. Standardize all features to zero mean and unit variance.
3. Randomly initialize the weights between −0.001 and 0.001.
4. Randomly select the training and test sets.
5. Begin to train the ANN.
6. After each epoch, compute the SNR saliency measure for each input feature.
7. Interrupt training when the SNR saliency measures for all input features have
stabilized.
8. Compute the test set classification error.
9. Identify the feature with the lowest SNR saliency measure and remove it from further
training.
10. Continue training the ANN.
11. Repeat steps 6–9 until all the features (except the noise feature) in the original set are
removed from training.
12. Compute the reaction of the test set classification error due to the removal of the
individual features.
13. Retain the first feature whose removal caused a significant increase in the test set
classification error, as well as
all features which were removed after that first salient feature.
14. Retrain the ANN with only the parsimonious set of salient input features.

This method is powerful in feature selection, because it can potentially only

require a single training run. This is opposed to other screening methods, such as the

Steppe-Bauer and Belue-Bauer methods that typically require 10 to 30 training runs

21

(Bauer, Alsing, & Greene, 2000). Ubeyli demonstrated the robustness of the SNR

saliency metric in a study where he used the SNR saliency method to determine salient

input features for a probabilistic neural network (PNN) used to classify internal carotid

arterial Doppler signals (ICADS) (Ubeyli, 2008). After running the SNR saliency

measure method, the PNN trained with only salient features outperformed the PNN using

all original features as inputs. Ubeyli has also applied this same method to different data

sets (Guler & Ubeyli, 2005).

2.7.4. Other Methods

Principal components analysis (PCA) is a classic approach to determining

important variables in multivariate data. For more information regarding PCA see

Multivariate Analysis: Methods and Applications (Dillon & Goldstein, 1984).

Cancelliere builds on the technique of PCA for feature selection. The method he

presents performs PCA on every pattern presented by the features. After determining

which features are non-salient, each exemplar’s value for the non-salient features is set to

the average value of the respective feature across all exemplars (Cancelliere, 2003). This

allows for a more efficient use of computation, because patterns in the data that are not

important are avoided. This process is done during the training process and continues

until classification accuracy increases significantly.

Setiano and Liu introduce an algorithm that selects features based on an

augmented error function, which is used to identify salient features (Setiono & Liu,

1997). Following training, the network will have connections with large magnitude for

features needed to represent underlying data patterns for classification.

22

2.8. General Ensemble Method

2.8.1. Introduction

The General Ensemble Method fuses network results together. The method uses

information from a population of networks and combines them to provide the best

possible linear combination.

As Perrone & Cooper present the method, they label the error for a network i as:

This is the error between the desired output f(x) for a given exemplar and actual output

for a given network i, fi(x). The general ensemble network can then be defined as:

where N is the total number of networks in the population and:

These αi values are calculated using a correlation matrix:

The relative error between a given network i and the error of the entire population of

networks is then used to determine αi:

 (Perrone & Cooper, 1992)

This method is used to fuse results of network populations in this research to avoid

encountering a matrix that has encountered a global minimum during its gradient search.

() () ()i im x f x f x= −

1 1
() () () ()

i N i N

GEM i i i i
i i

f x f x f x m xα α
= =

= =

= = +∑ ∑

1iα =∑

1

1

ijj
i

kjk j

C

C
α

−

−=
∑
∑ ∑

[() ()]ij i jC E m x m x≡

23

3. Methodology

3.1. Introduction

This section contains methodology information about two problems addressed in

this research:

• building an efficient neural network middle layer structure
• determining when to conclude the training of a neural network

During the training process of a neural network, the weights connecting neurons in

different layers fluctuate. This process occurs as the network attempts to correctly

classify data input to the network. The work in this section is based on the intuition that

the collection of weights emanating from a given middle layer neuron to each output

neuron can provide valuable insight regarding the efficiency of network structure. By

evaluating the collection of weights emanating from each middle layer neuron

individually, it is possible that the contribution of adding a new middle layer neuron can

be evaluated. Also, the amount of training time required can be estimated using

information from these weights.

 After using information from the upper layer weights to determine middle layer

size and terminate training, the methodologies are combined with SNR feature selection

to introduce a structured process for constructing a neural network.

3.2. Efficient Structure Using Upper Layer Weights

This section contains two different measures used in determining an efficient

lower bound for middle layer structure. These measures are used in an algorithm

proposed in 3.2.3.

24

3.2.1. Sum of Squared Weights (SSW)

The initial thought regarding the upper layer weights is they could provide insight

regarding the optimal number of middle layer neurons. The training of the weights is a

random process, so the value of an individual weight (i.e. a weight from a middle neuron

i to an output neuron j) will vary from one training of a network to the next. The input

into a given middle neuron is a single weight emanating from each of the features. While

the weights emanating from a specific node will vary due to the randomness of the

algorithm, if trained sufficiently, the network should classify data similarly from one

training to the next. Using this logic, the sum of squared weights emanating from each

middle layer neuron is recorded. For a given middle neuron i connected to upper layer

neuron(s) j, this can be calculated as:

2
,

1
()

J

i j
j

w
=
∑

The sum of squared weights metric is chosen, because it rids the weight values of a sign

and it also magnifies the weights with values larger than 1. The larger weights tend to

have the biggest impact on classification (Sietsma & Dow, 1991).

3.2.2. Mean Sum of Squared Weights (MSSW)

Observing trends in the sum of squared weights (SSW) across all middle neurons

led to a value of interest: the average SSW (MSSW) for a selected network structure. For

a hidden layer containing I middle layer nodes, the MSSW can be calculated as:

25

2
,

1 1
()

I J

i j
i j

w
MSSW

I
= ==
∑∑

Comparing the MSSW across different network structures led to an important

observation. With the inputs and output layers held constant, as the number of middle

layer neurons increase, the average MSSW will reach a maximum for a given middle

layer structure and then steadily decrease as additional middle layer neurons are added.

This can happen in two different ways.

3.2.3. MSSW Method

Using the observations discussed in section 3.2 thus far, an algorithm was

constructed to reveal an effective baseline number of middle layer neurons. For future

reference, MSSWx is the MSSW value for a network with x middle layer neurons. For a

network with a selected number of inputs and outputs, the algorithm is:

1. Train 2 network structures:

Network 1: Structure containing 1 middle layer node

Network 2: Structure containing 2 middle layer nodes

2. If MSSW2 > MSSW1 continue to step 4. Otherwise go to step 3.

3. Let x denote the largest middle layer structure tested thus far. Train a new

network structure with x+1 middle layer nodes. If MSSWx >MSSWx-1, continue

to Step 4. Otherwise, repeat.

26

*It is important to note that it is possible to get “stuck” in step 3 where MSSWx

>MSSWx-1 does not occur. If this appears to be the case, select the first structure

tested that provided a “significant” increase in validation accuracy

4. Let x denote the largest middle layer structure tested thus far. Train a new

network structure with x+1 middle layer nodes. If MSSWx <MSSWx-1, continue

to Step 5. Otherwise, repeat.

5. Stop. The network configuration with x-1 middle layer nodes is the effective

baseline structure.

This algorithm proves effective as long as the network is trained sufficiently.

Each time a network is trained it is recommended to train multiple times. In this research

each network structure is run at least 5 times. This is done to provide insurance against

the possibility of a neural network getting stuck in a local minimum while navigating the

error surface during training. The reality of getting stuck in a local minimum on the error

surface exists, because the starting point of the backpropagation algorithm is random in

nature. Decisions based on the results of network trainings are made using the average

values.

Figure 3-1 displays two examples of where the presented algorithm would

terminate. In both plots, the algorithm would suggest 3 middle layer neurons.

27

Figure 3-1 MSSW Example Graphs

3.3. Sufficiently Training an ANN

In section 3.2, the underlying assumption for the proposed algorithm is the

network is sufficiently trained. If the network is undertrained, using an algorithm like the

MSSW method can result in poor network performance. To analyze simulation output, it

is important to remove transient data (Law, 2007). The goal in doing this is to remove

bias created during a simulation model’s warm-up period. Data remaining once the

transient period is removed is known as steady-state data. Steady state can be analyzed to

better understand the effects of the distribution(s) of the input data. There are multiple

strategies attempting to accomplish this.

In an effort to integrate this practice to neural networks, the aforementioned

truncation strategies were implemented on the training of neural networks. Throughout

the training process, the upper layer weights of the network are altered. They initialize at

some random point (in this research, between -.1 and .1) and take on different values

based on the data input to the network. Initially, the intuition was the upper layer weights

would stabilize at some point when the network reached a sufficient amount of training.

28

After reaching this point, the weight values would steady in the same way a mean value

simulation does upon reaching the “steady-state” period. If this were the case, truncation

methods used in the simulation realm could be used to determine a point where training is

sufficient. Determining when the network reaches steady state would decrease time of

training and ensure the network is not over trained.

3.3.1. Sum of Weights

To start, the upper layer weights were observed individually to determine if they

ever stabilized. This is not the case. Instead, they seem to tend in their respective

directions. The next step in the process is to observe the sum of the upper layer weights.

Where ()i
j kw is a weight from middle layer node j to upper layer node i during training

epoch k.

3.3.2. Incremental Change in Sum of Weights

The initial thought was the sum of weights for any network would tend toward

zero during training. If this were the case, the intuition was once the sum of the weights

approached zero, training could be terminated. Unfortunately this logic did not hold.

The total sum of weights does not always approach zero. The next step was to observe

the incremental change in the sum of the weights:

()i
j k

i j
w∑∑

29

1() () 2,..., _i i
k j k j k

i j i j
inc w w k Total Iterations−= − ∀ =∑∑ ∑∑

inck is the incremental change from training epoch k-1 to epoch k. The thought was inck

would decrease as a sufficient amount of training had occurred. After some initial

testing, inck does tend to get smaller as the training process unfolds. So, once the weight

values start to “settle”, training has concluded. However, the values of inck where

training should be terminated tend to vary based on both network structure and the

magnitude of the input data.

3.3.3. Percentage Change in Sum of Weights

In attempt to make a general rule that could apply to multiple networks, the

percentage change in sum of weights is calculated. For an epoch k, the percent change in

the sum of weights is calculated as:

1

1

() ()
% 100*

()

i i
j k j k

i j i j
k i

j k
i j

w w
CHNG

w

−

−

−
=

∑∑ ∑∑
∑∑

The absolute value of the change is calculated because the direction of change was

deemed unimportant.

3.3.4. Threshold stopping criterion

During the initial training of a neural network, the %CHNG value displays

volatility. The first 500 to 1000 training epochs, depending on data being analyzed, tend

to be unstable. This observation along with the %CHNG variable led to the proposed

Threshold stopping criterion:

30

For any network structure, train for the minimum of:

1. 2500 Epochs

2. After 1000 epochs, the epoch where %CHNG < .025% for 50 consecutive training

epochs

This method prevents the network from under training. The parameters used in

this method were discovered by observation. For the data sets used in this research, 2500

training epochs appears to be the maximum amount required to train a successful

network. Also, 1000 epochs is a good rule of thumb to prevent not training long enough.

The %CHNG variable’s threshold of .025% is another value determined through

empirical observation. Paragraph 4.4 discusses an unsuccessful attempt to predict the

%CHNG value necessary to terminate training for a given network structure/data set.

When using this method, a given network structure should be trained multiple

times. The network structures being used in this research are relatively small. Due to the

nature of the gradient search method used during back propagation, it is possible for the

search to get halted in a local min when trying to minimize error (Bebis &

Georgiopoulos, 1994). This can lead to poor performance. Any network structure should

be trained multiple times to understand when this is occurring and avoid only having a

network that is underperforming.

3.4. Combining Structure Selection, Feature Selection, and Training

Termination Methods

Combining the MSSW method, Bauer, Alsing & Greene’s SNR Feature Selection

Algorithm (Belue & Bauer, 1995), and the proposed Threshold stopping criterion lead to

31

a process for selecting a functional, efficient neural network structure. The process is

summarized in Figure 3-2.

Figure 3-2 Combining Methods

When training a network use the Threshold stopping criterion. Also, when training a

network, multiple replications are recommended due to stochastic nature of results. At

least 5 replications are used in each case for this research, so average results can be

observed.

A written summary of the Combined method:

Step 1:
 Select Data
Step 2:

Implement middle layer selection algorithm (MSSW method) from section 3.2.
Step 3:
 Implement SNR feature selection method from 2.7.3.
Step 4:
 Stop.

During the training of any/all network configuration(s), use the proposed Threshold

stopping criterion from section 3.3.4.

Select Data

Use MSSW
method to
construct

middle layer

With middle
structure

set, remove
non-salient

features
using SNR
method

32

4. Results

4.1.Introduction

This chapter presents the results of applying the methods discussed in Chapter 3

to various data sets. After identifying the results of these methods, they are compared to

results of the theories discussed in Chapter 2. Again these methods are building an

efficient middle layer structure, terminating training, and combining the two with SNR

feature selection.

4.2. Mean Sum of Squared Weights (MSSW)

The algorithm presented in 3.2.3 is applied to various data sets to show results for

the building efficient network structure.

4.2.1. XOR Problem

The XOR problem in this research contains 150 data points, each with an x and y

coordinate randomly generated by a Uniform(-1,1) distribution. The goal for the XOR

problem is to classify the data points into two groups:

• Group 1- any point in quadrants 1 and 3 on the x,y coordinate plane
• Group 2- any point in quadrants 2 and 4 on the x,y coordinate plane

This means there are 2 input neurons and 2 output neurons. Other information about

neural networks used:

• 5 replications of each network size are trained
• Each network is trained for 5000 training epochs
• 75% of the data is used as training data and 25% is withheld as validation data
• Step size (η), or learning rate, of .01 is used
• Lower layer weights are initialized randomly between [-.01.01]
• Upper layer weights are initialized randomly between [-.1, .1]

33

Figure 4-1 XOR Problem MSSW

Figure 4-1 displays that MSSW values for varying sizes of the network. The algorithm

presented in 3.2.3 would terminate at 3 middle layer neurons. Figure 4-2 displays the

accuracies corresponding to the different network structures tested in Figure 4-1.

34

Figure 4-2 XOR Problem Accuracy

Figure 4-2 shows 3 middle layer neurons produce the highest validation accuracy.

This implies that 3 middle layer neurons is not only a baseline, but could also be the

optimal structure. At first this result seems odd. Simple logic implies that two lines

could separate the data into their four separable regions, so only two hidden layer nodes

are necessary. However, with only two middle nodes present, the network can get stuck

in a local minimum while trying to navigate the error surface. When three nodes are

present this is much less likely, which explains the increased performance from adding a

third neuron to the middle layer (Sprinkhuizen-Kuyper & Boers, 1999).

Table 4-1 includes the results of the MSSW method and other empirical heuristic

methods from section 2.5.

35

Table 4-1 XOR MSSW vs. Empirical Heuristics

Heurist Used Middle Layer
Mean Training

Accuracy
Stdev Mean Validation Accuracy Stdev

Kolmogorov 5 0.9434 0.0194 0.9189 0.0000

Lippmann 2 0.7823 0.0277 0.8162 0.1036

Zhang (LB) 3 0.9522 0.0048 0.9189 0.0000

Zhang (UB) 12 0.8779 0.0403 0.8595 0.0352

Daqi and Shouyi 4 0.9292 0.0000 0.9189 0.0000

Mirchandani&Cao 3 0.9522 0.0048 0.9189 0.0000

Gorman 2 0.7823 0.0277 0.8162 0.1036

MSSW 3 0.9522 0.0048 0.9189 0.0000

It appears that the MSSW performs as well as the other heuristics. Kolmogorov’s

heuristic results in higher validation accuracy, but the difference is minimal.

4.2.2. Body Fat Data Set

The data set contains 252 entries, each having 13 inputs:

• Age (years)
• Weight (lbs)
• Height (inches)
• Neck circumference (cm)
• Chest circumference (cm)
• Abdomen circumference (cm)
• Hip circumference (cm)
• Thigh circumference (cm)
• Knee circumference (cm)
• Ankle circumference (cm)
• Biceps (extended) circumference (cm)
• Forearm circumference (cm)
• Wrist circumference (cm)

These features are used to predict body fat percentage. In this problem, the neural

network is used to determine if the entries are in one of two groups:

36

• Group 1: > 20% body fat
• Group 2: ≤ 20% body fat

The network has a structure with 13 input neurons and 2 output neurons with the

following training parameters:

• 5 replications of each network size are trained
• Each network is trained for 5000 training epochs
• 75% of the data is used as training data and 25% is withheld as validation data
• Step size (η), or learning rate, of .01 is used
• Lower and Upper layer weights are initialized randomly between [-.1, .1]

Figure 4-3 Body Fat Problem MSSW

Figure 4-3 displays the MSSW for the body fat data set while using network

structures with an increasing number of middle layer neurons. The algorithm would

terminate with 3 middle layer neurons. Figure 4-4 displays the accuracy of the network

for the different network structures displayed in Figure 4-3.

37

Figure 4-4 Body Fat Problem – Accuracy

Figure 4-4 shows that the highest validation accuracy occurs when 3 middle layer

neurons are used. After this point, it appears that additional middle layer neurons result

in overtraining (training accuracy increases while validation accuracy decreases).

In this instance, the MSSW method provides not only a good baseline network

structure, but also the optimal structure. The results of the MSSW method are compared

to other empirical heuristics discussed in chapter 2 in Table 4-2. The heuristics involving

data patterns are exempt, because determining the patterns in a data set with a large

number of features/outputs is beyond the scope of this research.

38

Table 4-2 Body Fat MSSW vs. Empirical Heuristics

Heuristic Used Middle Layer
Mean

Training
Accuracy

Std. Dev.
Mean

Validation
Accuracy

Std. Dev.

Kolmogorov 27 0.9881 0.0090 0.7183 0.0456

Lippmann 6 0.9788 0.0106 0.7513 0.0330

Zhang (LB) 7 0.9868 0.0068 0.7183 0.0456

Zhang (UB) 16 0.9947 0.0075 0.7579 0.0152

Daqi and Shouyi 9 0.9881 0.0090 0.7381 0.0205

MSSW 3 0.9312 0.0106 0.7778 0.0449

It appears that the MSSW method performs better than the other structures tested. The

recommended structure does not learn the training data as well as other structures, but the

validation accuracy is the highest of any tested.

4.2.3. Finance Industry Data Set

The finance industry data set contains financial information about 25 companies

across three industries (14 pharmacies, 5 textiles, and 6 super markets). There are seven

features:

• Rate of Return (ROR)
• Debit/Equity Ratio (Deb/Eq)
• Sales
• Earning Per Share (EPS)
• Net Performance Margin (NPM)
• Price/Earnings Ration (P/E)
• Profitability

4 pharmacies, 1 textile, and 2 super markets are used for validation, while the rest are

used for training. The structure of the network used is 7 inputs and 3 output neurons.

Additional information about training:

• 5 replications of each network size are trained
• Each network is trained for 2500 training epochs
• 75% of the data is used as training data and 25% is withheld as validation data
• Step size (η), or learning rate, of .01 is used

39

• Lower layer and upper layer weights are initialized randomly between [-.1, .1]

The network is trained for 2500 training epochs , because observation of training runs

revealed this to be a point where the network is not under-training.

Figure 4-5 Finance Data MSSW

Figure 4-5, a plot of MSSW for different size networks, displays that the algorithm would

terminate with 4 middle layer neurons.

40

Figure 4-6 Finance Data Accuracy

Figure 4-6 shows that adding middle layer neurons, beyond the 4 recommended

by the algorithm presented in 3.2.3, does increase the validation accuracy of the model.

The hidden layer with 4 neurons provides an effective baseline structure, but not an

optimal structure.

Table 4-3 contains the results of the MSSW method against some empirical

heuristics discussed in section 2.5. The heuristics involving data patterns are exempt,

because determining the patterns in a data set with a large number of features/outputs is

beyond the scope of this research.

41

Table 4-3 Finance Data MSSW vs. Empirical Heuristics

Heuristic Used Middle Layer
Mean

Training
Accuracy

Std.
Dev.

Mean
Validation
Accuracy

Std Dev.
Average #
Training
Epochs

Kolmogorov 15 1 0 0.9667 0.0745 2500

Lippmann 5 1 0 0.9667 0.0703 2500

Zhang (LB) 6 1 0 0.8500 0.1657 2500

Zhang (UB) 15 1 0 0.9667 0.0745 2500

Daqi and Shouyi 7 1 0 0.9667 0.0703 2500

MSSW 4 0.97895 0.067 0.8333 0.1571 2500

The results in Table 4-3 are based on ten replications for each setting of the network. The

results follow the conclusion after analyzing Figure 4-6. The MSSW method provides an

effective structure, but not the optimal structure. The larger variance in validation

accuracy between runs shows that there are times when the MSSW method works just as

well as the other heuristics and there are times when it underperforms them.

4.2.4. Hot Dog Data Set

The next data set used is a hot dog data set. The data set contains 54 different hot

dog brands which are made of three different meats (20 Beef, 17 “Meat”, & 17 Poultry).

The data set containing the following features:

• $/oz
• $/lb protein
• Calories
• Sodium
• Protein/fat.

The goal of the neural network used is to predict the correct meat for each hot dog brand

based on the above variables. The network used for the data has a structure of 5 input

neurons and 3 output neurons. Additional information about training:

• 5 replications of each network size are trained
• Each network is trained for 2000 training epochs
• 75% of the data is used as training data and 25% is withheld as validation data

42

• Step size (η), or learning rate, of .01 is used
• Lower layer and upper layer weights are initialized randomly between [-.1, .1]

Figure 4-7 Hot Dog MSSW

The chart shown in Figure 4-7 shows that the maximum value of MSSW, which would

terminate the proposed algorithm, occurs with 2 middle layer neurons.

43

Figure 4-8 Hot Dog Accuracy

Figure 4-8 reveals that a network with 2 middle layer neurons works very well. The

training accuracy is worse than any network structure with more than 2 middle layer

neurons, while the average validation accuracy is the highest of any structure tested.

The result achieved using the MSSW method is compared to other empirical heuristics in

Table 4-4.

44

Table 4-4 Hot Dog MSSW vs. Empirical Heuristics

Heuristic Used
Middle Layer

Neurons
Mean Train

Accuracy
Std. Dev.

Mean Val
Accuracy

Std. Dev.
Average #
Training
Epochs

Kolmogorov 11 0.9878 0.0172 0.6385 0.0519 2000

Lippmann 4 0.8268 0.0138 0.6769 0.0324 2000

Zhang (LB) 5 0.8268 0.0214 0.6846 0.0243 2000

Zhang (UB) 14 0.9780 0.0268 0.6538 0.1042 2000

Daqi and Shouyi 6 0.8317 0.0077 0.7000 0.0243 2000

MSSW 2 0.7756 0.0154 0.7462 0.0372 2000

The MSSW method performs better than any of the other heuristics tested. The method

provides the highest validation accuracy and the lowest training accuracy.

4.2.5. Summary

This section applied the MSSW method to determine a successful lower bound for

the middle layer of a neural network structure. The algorithm is used on four different

data sets and proved successful in each case. Sometimes it appears that not only was the

resulting middle layer structure an efficient baseline, but also optimal.

4.3.Sufficiently Training a Neural Network

4.3.1. Introduction

This section implements the proposed Threshold stopping criterion from section

3.3. The new method and other heuristics are applied to three different data sets. The

structure used for each of the networks was recommended by the results from section 4.2.

Using prior work to determine a successful structure is necessary so there is knowledge

that training will eventually lead to an effective neural network. In section 4.5, the

methods from 4.2 and this section are combined.

45

4.3.2. XOR Data Set/Discussion of Data Analysis

To first analyze the idea of terminating training, the XOR Data Set used in section

4.2.1 is evaluated. Again, the data set contains two inputs: an x and y coordinate. Any

coordinate lying in the upper right or lower left quadrants of the x, y plane are considered

to be in one class and the coordinates in the upper left and lower right quadrants are in

another class. The following setup was used:

• 150 data points with x,y values generated from Unifrand(-1,1)
• 75% used for training (113)
• 25% used for validation (37)
• Network Structure: 2 Input Nodes, 3 Middle Layer Nodes, 2 Output Nodes
• 5500 Training Epochs
• 10 Runs (individual training of a network)
• Step size of .01
• Lower layer weights are initialized randomly between [-.01,.01]
• Upper layer weights are initialized randomly between [-.1, .1]

5500 training epochs are used, because after experimenting with the generalization loss

heuristic, this seems like a good termination point. Section 4.2.1 displayed that

successful classification can occur with less epochs. However, training past 5000 epochs

could reveal there is room for improvement or maybe the network is already overtraining.

The first step in analyzing the weights was to simply plot them for a single run and

observe their activity. Figure 4-9 contains a plot of the weights over the course of

training for a single run.

46

Figure 4-9 XOR Data Weight Values

The weights are labeled with their middle node of origin to the output node (i.e.

middle nodes are A,B, &C and outputs are 1&2). Figure 4-9 reveals that the weights do

not actually stabilize, but instead continually head in their respective directions. The

activity of the weights brought forth the idea of looking at the sum of the weights over

the course of training. For a given epoch, the sum of the weights would be calculated as

follows:

Where ()i
j kw is a weight from middle layer node j to upper layer node i during epoch k.

This is plotted vs. the number of training epochs throughout the process of training.

()i
j k

i j
w∑∑

47

Figure 4-10 XOR Data Sum of Weights

Figure 4-10 shows the total sum of weights for all 10 runs of the network. There appears

to be a lot of variation/volatility between 500 and 2500 training epochs, before the data

all tends towards zero.

Figure 4-11 Average Sum of Weights

48

Figure 4-11 displays an average (across 10 replications) of the total sum of weights over

the course of training. It should be noted that graph is more zoomed in on the y-axis than

Figure 4-10 to better visualize the movement of the average throughout the training

process. Unlike this problem, the sum of upper layer weights does not always tend

towards zero, so the average will not always “converge” to the x-axis as it does in this

problem. With this in mind, the change in the total sum of weights during the training

process could provide insight regarding the termination of training. This incremental

change can be calculated using the formula presented in 3.3.2:

1() () 2,...,5500i i
k j k j k

i j i j
inc w w k−= − ∀ =∑∑ ∑∑

Again, ()i

j kw is a weight from middle layer node j to upper layer node i during epoch k.

Figure 4-12 XOR Incremental Weight Change

Figure 4-12 is a plot of the incremental change in the total sum of weights across

training epochs. Only the first 700 training epochs are shown, because the increments

49

simply tend closer to zero for the remainder of training. It appears around training epoch

125 that the incremental change is reasonably small. The results of the network’s ability

to classify the data at this point are listed in Table 4-5:

Table 4-5 XOR Data Visual Incremental Truncation Accuracy

Results

Train. Accuracy Val. Accuracy

.5575 .5405

The results in Table 4-5 are the average across all 10 runs of the network. The network is

slightly more accurate than a random guess, which is evidence that the network is

undertrained at this point. Moving forward, the thought was to observe the percentage

change in the sum of weights across training epochs. This is calculated as:

1

1

() ()
% 100* 2,...,5500

()

i i
j k j k

i j i j
k i

j k
i j

w w
CHNG k

w

−

−

−
= ∀ =

∑∑ ∑∑
∑∑

The absolute value of the percentage change is used, because the direction of change is

not of interest.

50

Figure 4-13 XOR Data %CHNG

Figure 4-13 contains a plot of the percentage change over the course of training

for each rep individually (left) and a moving average (right). It appears that near training

epoch 3000 all of the replications change close to the same amount for the remainder of

training.

 Welch’s idea of visually choosing a point where data “converges” on a moving

average graph can be applied to the upper layer weights of a neural network (Welch,

1981). Instead of choosing a point where the data becomes “steady-state”, the point

where the percentage change in the data substantially decreases in volatility is selected

(3000 epochs). This strategy will be referred to as Welch’s method for the remainder of

this research.

Table 4-6 contains the results of stopping training after 3000 training epochs as

opposed to the full 5500 training epochs that were run initially. After 3000 epochs, the

network does a better job identifying validation data than at 5500 epochs, while not

performing as well with the training data. This shows that stopping training at 3000

51

training epochs is beneficial, because between 3000 and 5500 training epochs the

network is “over learning” the data.

Next, the Threshold stopping criterion from section 3.3.4 is used:

Table 4-6 XOR Data % CHNG Threshold Truncation Results

Method
Average #
Training
Epochs

Mean
Train.

Accuracy
Std. Dev.

Mean
Valid.

Accuracy
Std. Dev.

Threshold 2243.6 0.8938 0.0661 0.9027 0.0808

Welch 3000 0.9363 0.01 0.9189 0

Full 5500 0.9646 0 0.8919 0

Gen. Loss 5743.2 0.9646 0 0.8919 0

The Threshold stopping criterion appears effective for this data set. It requires the

least training epochs and on average performs just as well as the other heuristics, but the

results appear to be a bit less consistent. It is interesting to note that the generalization

loss heuristic and terminating training after 5500 epochs provide the exact same

performance every time.

4.3.3. Discussion of Truncation Heuristics

Since all observed variations of the weights tend towards zero in the XOR

problem, there appears to be no true “steady-state”. However, using Welch’s idea of

visually choosing a point where data “converges” on a moving average graph displays the

ability to provide successful results. Other heuristics for truncation which treat data as

simulation output do not apply well, because they assume the data hovers around a true

mean, which is not the case here. Some of these heuristics include: SPC method,

Randomization Test, Conway Rule, and the Crossing of the Means Rule. For information

on these and other heuristics, see Mahajan and Ingalls’ survey paper (Mahajan & Ingalls,

2004).

52

4.3.4. Finance Data Set

After achieving some level of success with the XOR data set, the Threshold

stopping criterion and Welch’s method were applied to the Finance Industry data set used

in 4.2.3. Again, this data set contains financial information about 25 companies across

three industries (14 pharmacies, 5 textiles, and 6 super markets). There are seven input

variables:

• Rate of Return (ROR)
• Debit/Equity Ratio (Deb/Eq)
• Sales
• Earning Per Share (EPS)
• Net Performance Margin (NPM)
• Price/Earnings Ratio (P/E)
• Profitability

 The goal of this problem is to separate the data into the 3 separate industries. Other

training information:

• 75% of data used for training
• 25% of data used for validation
• 10 Runs (individual training of a network)
• Step size of .01
• Initial weight values randomly assigned between ±.1

53

Figure 4-14 Finance Data - Total Sum of Weights During Training

Figure 4-14 displays the total sum of the weights during training for an individual

replication of the network. As was mentioned previously, these weights do not center on

the x-axis or zero, but instead become more negative as training continues.

Figure 4-15 Finance Data - Incremental Change in Sum of Weights

Figure 4-15 is a plot of the incremental change of the sum of weights. This is similar to

the XOR problem, because the data tend towards zero at the end.

54

Figure 4-16 Finance Data - % Change in Sum of Weights

Figure 4-16 displays the percent change in the total sum of weights during training. The

figure on the left has the values for all 10 runs plotted while the plot on the right has a

moving average. Using the reasoning from the XOR problem that the transient period

ends when the percent change settles close to zero, this data becomes stable around 1000

training epochs. Table 4-7 reveals the method of visual data truncation is not as

successful for this problem. The proposed Threshold stopping criterion from 3.3.4 is also

applied. For this data set, the criterion for stopping training is met on average at training

epoch 1545.

Table 4-7 Finance Problem – Threshold Stopping Criterion Result

Method
Average #
Training
Epochs

Mean
Train.

Accuracy
Std. Dev.

Mean
Valid.

Accuracy
Std. Dev.

Welch 1000 0.8263 0.1165 0.6833 0.1459

Threshold 1545.3 0.8947 0.1265 0.8167 0.1657

Full 4000 1 0 0.9 0.1491

Gen. Loss 6812.5 0.9789 0.0666 0.8500 0.0946

Table 4-7 displays the network performance at this point. A generalization loss technique

is also applied and proved to train much longer than expected. The generalization loss

55

technique is run with α=1% and a max number of training epochs set at 7500. The

average validation accuracy for the threshold stopping criterion appears successful, but

displays a lot of volatility. The best truncation method appears to be stopping training at

4000 epochs.

4.3.5. Hot Dog Data Set

The Threshold stopping criterion is now applied to the hot dog data set presented

in section 4.2.4. The network used for the data has a structure of 5 input neurons, 6

middle layer neurons, and 3 output neurons. Other training information:

• 75% of data used for training
• 25% of data used for validation
• 10 Runs (individual training of a network)
• Step size of .01
• Initial weight values randomly assigned between ±.1
• Trained for 5500 training epochs

Figure 4-17 Hot Dog Sum of Weights

Figure 4-17 displays the percentage change in the total sum of the upper layer weights

over the course of training. The plot on the right contains the moving average for this

56

data. The plot of individual runs has a zoomed in y-axis to display the initial volatility.

The truncation point using Welch’s method is estimated at training epoch 800 and the

Threshold stopping criterion terminates on average at training epoch 1490.

Table 4-8 Hot Dog Data Training

Method
Average #
Training
Epochs

Mean
Train.

Accuracy
Std. Dev.

Mean
Valid.

Accuracy
Std. Dev.

Welch 800 0.7537 0.0077 0.7846 0.0324

Threshold 1210.7 0.7659 0.0126 0.7615 0.0243

Gen. Loss 3607.1 0.8220 0.0231 0.6923 0.0000

Full 5500 0.9195 0.0258 0.7308 0.0831

Table 4-8 displays results of four different stopping criteria: Welch’s truncation,

Threshold, generalization loss, and 5500 training epochs. The generalization loss is run

with an α=1%. As the network trains longer, it fits the training data better. It appears the

validation accuracy decreases as training continues, which is expected. Each method

tested appears to provide some tradeoff between average validation accuracy, training

time, and volatility of results. Generalization loss provides the most consistent results,

but the extension of Welch’s method appears to provide the best overall results.

4.3.6. Body Fat Data Set

The truncation methods are applied to the body fat data set discussed in 4.2.2.

Five separate trainings of the network determined by the MSSW method (3 middle

nodes) are completed. Figure 4-18 plots each run’s accuracy and %CHNG value against

training epochs.

57

Figure 4-18 Body Fat Data %CHNG vs. Accuracy

 In this example, the networks understand the data quickly. It appears, the sooner

the network finishes training the better. The moving average of the %CHNG variable is

visible in Figure 4-19.

58

Figure 4-19 Body Fat Data Moving Average

The %CHNG value is quite volatile until about 2750 training epochs. Welch’s

method and other truncation method results are available in Table 4-9.

Table 4-9 Body Fat Data Terminating Criterion

Average #

Training Epochs
Mean Train.

Accuracy
Std. Dev.

Mean Valid.
Accuracy

Std. Dev.

Generalization Loss 1156.6 0.8720 0.0255 0.8032 0.0266

Threshold 1783.6 0.8444 0.0080 0.7873 0.0080

Welch 2500 0.9153 0.0179 0.7905 0.0325

Full 5000 0.9407 0.0177 0.7651 0.0629

It appears that the generalization loss method, using an α=1%, has the best performance.

For the heuristics tested, it appears that shorter training periods provide better results.

59

4.3.7. Summary

In summary, there is information to be gleaned from observing the upper layer

weights during the training process of a neural network. While training, the weights

display a period of volatility before settling down. The longer the network trains, the less

the sum of the weights changes. However, the weight values do not appear to settle at a

mean value like output data in a mean value simulation. Instead, as the number of

training epochs increases, the sum of the weights changes in decreasing increments.

Percent change in the sum of the weights decreases during training as well.

The Threshold stopping criterion proposed in this research accounts for the initial

volatility in the data and terminates training once the weights settle down. Using this

method resulted in some under training of the network on the finance data set and was

successful on the other ones tested. The generalization loss method was successful on all

data sets, but on average required many more training epochs than the Threshold stopping

criterion. Using Welch’s method on the percent change in the sum of weights worked

well on all but the finance data set. The network undertrained when analyzing the

finance data set. It is probably a stretch to apply this heuristic to weight values, because

they never truly settle down. Also, the results are very subjective since the method is

dependent on a visual observation of when the data settles down. Due to the subjective

nature of the Welch method results, the Threshold stopping criterion is the method of

choice moving forward in the research.

60

4.4. Regression Equation for Stopping Training

4.4.1. Introduction

The goal in determining an efficient structure for a neural network is to decrease

training time while still maintaining a network that generalizes well. Many factors affect

the number of epochs required to sufficiently train. They include: number of exemplars,

number of features, number of middle layer nodes, number of outputs, and the random

nature of the back propagation algorithm. In an attempt to predict the number of epochs

required in training, a regression on two different values was run. The two values of

interest are:

• Value of %CHNG when max validation accuracy during training occurs
• Training epoch where max validation accuracy during training occurs

The regressions were not successful, but the results are available in Appendix A.

4.5. Combining Methods

4.5.1. Introduction

The goal in combining the middle layer selection algorithm, SNR feature

selection, and upper layer weight training is to create an efficient, accurate neural

network structure. Removing features and middle nodes decreases training time, while

not necessarily decreasing the performance of the network. This section will apply the

proposed Combined method to four data sets. The XOR data set is not included, because

both features, the x and y coordinate, are essential to classifying data. Using the

combined method on the XOR data set results in the same network/results as the

Threshold stopping criterion did in section 4.3.2.

61

Again, the Combined method is summarized below:

Step 1:
 Select Data
Step 2:

Implement middle layer selection algorithm (MSSW method) from section 3.2.
Step 3:
 Implement SNR feature selection method from 2.7.3.
Step 4:
 Stop.

During the training of any/all network configuration(s), use the proposed Threshold

stopping criterion from section 3.4.

4.5.2. Metrics Used

Validation Classification Error – This is calculated as (1 - validation classification

accuracy)

4.5.3. Fisher’s Iris Data Set

Fisher’s iris data set is a widely used multivariate data set (Bauer, Alsing, &

Greene, 2000). This new data set is used to illustrate the combined method from start to

finish without repeating information previously presented in this research. The data set

has 3 classes of iris flowers: setosa, versicolor, and virginica. The data set contains four

features: sepal length, sepal width, petal length, and petal width.

In order to execute the SNR method, a noise feature is also added to the data set.

The noise feature is randomly generated from a uniform distribution between 0 and 1.

The goal of this problem is to separate the data into the 3 separate classes. Other training

information:

• 75% of data used for training
• 25% of data used for validation

62

• 10 Runs (individual training of a network)
• Step size of .01
• Initial weight values randomly assigned between ±.1
• Trained until Threshold stopping criterion is met

Step 2: Middle layer selection algorithm (MSSW method)

Figure 4-20 Iris Data all Features

For illustration’s sake, this problem is run with 1,2,3,4, and 5 middle neurons. However,

the MSSW middle layer algorithm would terminate at 2 middle neurons. It is visible in

the accuracy chart that this point is ideal. However, 2 middle neurons provide an

efficient baseline structure.

63

Step 3: SNR Feature Selection

Figure 4-21 Iris Data All Features- 2 Middle Neurons

To start, the network is run 10 times with all features included. Figure 4-21

contains graphs of %CHNG and training accuracy through the course of training. The

majority of the runs appear to classify at approximately 95% accuracy, but two seem

stuck in a local minimum. Following the SNR feature selection algorithm, feature 1 is

removed from the data set.

64

Figure 4-22 Iris Data- Feature 1 Removed

Removing feature 1 appears to rid the network of the problem of getting stuck in a

local minimum. The SNR method recommends removing feature 2 for the next training

epoch. Results of 5 runs at this setting are available in Figure 4-23.

65

Figure 4-23 Iris Data- Feature 1&2 Removed

Removing feature 2 leads to the slightly higher accuracy while some runs train for

fewer epochs. This improved the efficiency of the model. The SNR method now calls

for the removal of feature 3.

66

Figure 4-24 Iris Data- 1, 2& 3 Removed

The results appear very similar to the results of the previous network structure.

This shows that the data is essentially a single variable problem. After removing the last

feature, feature 4, there is a “significant” increase in the validation error. The validation

error during the SNR feature selection process is plotted in Figure 4-25.

67

Figure 4-25 Iris SNR Validation Error

Feature 4, petal width, is the only salient feature, because there is a “significant”

change in validation error when it is removed.

Using only feature 4 and the noise feature as inputs, the MSSW middle layer

algorithm is run again. The results of the different feature sets used are summarized in

Table 4-10. The selected feature set is shaded.

Table 4-10 Combined Methods Summary – Iris Data

0 Features
Removed

Feature 1
Removed

Features 1&2
Removed

Features 1,2,&3
Removed

All Features
Removed

Mean Val Acc 0.8919 0.9432 0.9703 0.9514 0.2595

Mean Val Err 0.1081 0.0568 0.0297 0.0486 0.7405

Std Dev 0.1147 0.0085 0.0085 0.0279 0.0587

While not providing the best results, the recommended network has a smaller

structure than the only network with better performance (network with features 1 & 2

removed), while requiring less training time. Overall, the combined method reduced the

number of features from 4 to 1, while using only 2 middle layers neurons. This is a

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 Features
Removed

Feature 1
Removed

Features 1&2
Removed

Features
1,2,&3

Removed

All non- noise
Features
Removed

Er
ro

r

Validation Error

Error

68

small, efficient network structure. Yang and Honavar provide results for the Cascade

Correlation method for the iris data set based on ten runs.

Table 4-11 Cascade Correlation Method – Iris Data

Mean Val Accuracy 0.926

Std Dev Val Acc 0.014

The combined method outperforms the results displayed in Table 4-11. However, these

results should be taken with a grain of salt, because Yang and Honavar do not specify

how many data points were withheld for testing purposes (Yang & Honavar, 1991).

4.5.4. Body Fat Data Set

The combined method is now applied to the same body fat data set used in

sections 4.2.2. and 4.3.6.. The following information is true for each network trained

during the combined method:

• 75% of data used for training
• 25% of data used for validation
• 10 Runs (individual training of a network)
• Step size of .01
• Initial weight values randomly assigned between ±.1
• Trained until Threshold stopping criterion is met

Applying the combined method results in the following:

• Step 2 (MSSW method): 2 Middle Layer Neurons
• Step 3 (SNR feature selection): Remove all features but abdominal

circumference

69

Figure 4-26 Body Fat Data – Combined Method

Figure 4-26 displays the results of the combined method against other heuristics

previously discussed in the literature. In the figure, the validation accuracy is represented

by the purple bars and the std. deviation by the teal bars. The combined method provides

the highest validation accuracy with the lowest standard deviation across separate

network trainings. The combined method clearly results in the model with the best

generalizing ability. Table 4-12 summarizes the same data and includes information

regarding accuracy of training data.

Table 4-12 Body Fat Data Combined Method vs. Other Heuristics

Heuristic Used
Middle
Layer

Mean Training
Accuracy

Std. Dev.
Mean Validation

Accuracy
Std. Dev.

Average #
Training
Epochs

Kolmogorov 27 0.9881 0.009 0.7183 0.0456 5000

Lippmann 6 0.9788 0.0106 0.7513 0.033 5000

Zhang (LB) 7 0.9868 0.0068 0.7183 0.0456 5000

Zhang (UB) 16 0.9947 0.0075 0.7579 0.0152 5000

Daqi and Shouyi 9 0.9881 0.009 0.7381 0.0205 5000

MSSW 3 0.9312 0.0106 0.7778 0.0449 5000

MSSW +
Threshold

3 0.8995 0.0150 0.8016 0.0561 2212.5

Combined 3 0.8095 0.0075 0.8175 0.0112 2216.5

70

4.5.5. Finance Data Set

The combined method is now applied to the same financial industry data set used

in sections 4.2.3 and 4.3.4. The following information is true for each network trained

during the combined method:

• 75% of data used for training
• 25% of data used for validation
• 10 Runs (individual training of a network)
• Step size of .01
• Initial weight values randomly assigned between ±.1
• Trained until Threshold stopping criterion is met

Applying the combined method results in the following:

• Step 2 (MSSW method): 4 Middle Layer Neurons
• Step 3 (SNR feature selection): Remove no features

The resulting networks’ performances from step 2 are documented in Table 4-13.

Table 4-13 Combined Methods Summary – Finance Data

No Feature
Removed

Feature 3
Removed

Features
3&7

Removed

Features 2,3
& 7

Removed

Features
1,2,3,&7
Removed

Features
1,2,3,6 & 7
Removed

Features
1,2,3,5,6 & 7

All Features
Removed

Mean Valid. Acc 0.8833 0.75 0.85 0.7333 0.6833 0.5833 0.5333 0.5

Mean Valid. Error 0.1167 0.25 0.15 0.2667 0.3167 0.4167 0.4667 0.5

Std Dev. 0.1125 0.18 0.123 0.1405 0.123 0.1416 0.0703 0

The network resulting from the combined method includes all features along with 4

middle nodes. Figure 4-27 compares the results of this network structure to the structure

containing all features while executing the MSSW method, the Threshold stopping

criterion (MSSW+Threshold), and other heuristics analyzed earlier in this research.

71

Figure 4-27 Finance Data – Combined Method vs. Other Heuristics

Table 4-14 includes the same data as Figure 4-27 along with information about the

training accuracy.

Table 4-14 Combined Methods Comparison – Finance Data

Heuristic Used Middle Layer
Mean

Training
Accuracy

Std. Dev.
Mean

Validation
Accuracy

Std. Dev.
Average #

Training Epochs

Kolmogorov 15 1 0 0.9667 0.0745 2500
Lippmann 5 1 0 0.9667 0.0703 2500
Zhang (LB) 6 1 0 0.85 0.1657 2500
Zhang (UB) 15 1 0 0.9667 0.0745 2500

Daqi and Shouyi 7 1 0 0.9667 0.0703 2500
MSSW 4 0.979 0.067 0.8333 0.1571 2500

MSSW + Threshold 4 0.9526 0.1006 0.8833 0.1125 1636.1
Combined Method 4 0.9526 0.1006 0.8833 0.1125 1636.1

The results of the combined method appear successful; however, additional structure in

the hidden layer improves the performance of the network.

4.5.6. Hot Dog Data Set

The combined method is now applied to the same hot dog data set used in

sections 4.2.4 and 4.3.5. Applying the combined method results in the following:

72

• Step 2 (MSSW method): 2 Middle Layer Neurons
• Step 3 (SNR feature selection): Remove features 5, 4, and 1

Each network structure is run five times. The resulting networks’ performances in Step 3

are available in Table 4-15.

Table 4-15 Combined Methods Summary – Hot Dog Data

No Features

Removed
Feature 1
Removed

Features 5
& 1

Removed

Features 5,
4, & 1

Removed

Features 5,
4, 3, & 1

Removed

All Features
Removed

Mean Valid. Accuracy 0.6692 0.7077 0.7154 0.6846 0.6 0.4

Mean Valid. Error 0.3308 0.2923 0.2846 0.3154 0.4 0.6

Std Dev. 0.1954 0.1486 0.1778 0.0568 0.1135 0.0873

The network structure with 2 middle layer neurons and only 2 features, $/lb protein and

calories, is the structure chosen by the combined method.

Figure 4-28 Hot Dog Data – Combined Method vs. Other Heuristics

Figure 4-28 displays the results of the combined method against other heuristics

tested thus far. The MSSW method with a full 2000 epochs appears to have the highest

average validation accuracy and close to the smallest variance.

73

Table 4-16 Combined Method vs. Other Heuristics – Hot Dog Data

Heuristic Used Middle Layer
Mean Training

Accuracy
Std. Dev.

Mean
Validation
Accuracy

Std. Dev.
Average #
Training
Epochs

Kolmogorov 11 0.9878 0.0172 0.6385 0.0519 2000

Lippmann 4 0.8268 0.0138 0.6769 0.0324 2000

Zhang (LB) 5 0.8268 0.0214 0.6846 0.0243 2000

Zhang (UB) 14 0.978 0.0268 0.6538 0.1042 2000

Daqi and Shouyi 6 0.8317 0.0077 0.7 0.0243 2000

MSSW 2 0.7756 0.0154 0.7462 0.0372 2000

MSSW + Threshold 2 0.7147 0.1281 0.6692 0.1954 1265.4

Combined Method 2 0.6829 0.0736 0.6846 0.0568 1362.4

Table 4-16 includes the data from Figure 4-28 along with information regarding

the training data. In the MSSW+Threshold stopping criterion, one of the ten replications

yielded a validation accuracy of approximately .3 or 30%, which is the cause of the large

validation accuracy variance. The advantage the combined method provides in decreased

training epochs is countered by a decrease in validation accuracy. The MSSW method

with a full 2000 training epochs provides the best network performance.

4.5.7. Summary

The combined method was tested on the iris, body fat, financial industry, and hot

dog data sets. The networks resulting from the combined method have smaller structures

than any other tested in this research. In the instance of the body fat and iris data sets the

network structure appears successful. For the financial industry and hot dog data sets the

performance results fall short of other methods tested. However, the drop off in

performance could be worth the decrease in training time required by a smaller network.

For the small data sets tested in this research this is likely not the case, but for a larger

74

industrial data set, the tradeoff provided by the combined method could be more

appealing.

4.6.Generalized Ensemble Method

4.6.1. Introduction

The generalized ensemble method (GEM) is introduced in this research to fuse

multiple network results together to improve overall performance. In section 4.5 the

combined method is applied to multiple data sets. Volatility is present in these results

due to the stochastic nature of the backpropagation algorithm. Multiple networks are

trained for each data set to display the variance of the results and provide insurance

against the possibility of an individual run getting stuck in a local minimum during

training. It would be possible to simply throw out a poor performing network. However,

unsuccessful network trainings do not necessarily yield useless results. Using this train

of thought, GEM is applied in this research to combine information from multiple

networks. Further, GEM is proven to provide the best possible linear combination of a

population of network’s results.

4.6.2. GEM Application

To apply the GEM method, five separate runs of the networks recommended by

the combined method are trained for each data set. The GEM method is then applied to

combine the results of these five network trainings.

75

Table 4-17 GEM Application

Combined Method Result GEM

Data Set
Avg. Validation

Accuracy
Std Dev.

Validation
Accuracy

XOR 0.9027 0.0808 0.9189

Body Fat 0.8175 0.0112 0.8254

Finance 0.8833 0.1125 1

Hot Dog 0.6846 0.0568 .6923

Iris 0.9514 0.0279 0.973

Table 4-17 displays the GEM validation accuracy is higher than the average of the

combined method runs for all five data sets. For each data set, the GEM results are close

to if not the best results displayed thus far for any heuristic in this research.

76

5. Conclusion/Future Work

5.1. Conclusion

During this research, the analysis of upper layer weights in feed-forward neural

networks led to a proposed method to choose a baseline structure (MSSW method), a

proposed method to terminate training (Threshold stopping criterion), and an iterative

process to arrive at an efficient neural network structure (Combined method).

The motivation in analyzing the upper layer weights was to discover an optimal

middle layer structure. Unfortunately, the MSSW method is not always optimal. With

that said, neither are any of the heuristics tested in this research. For the data sets tested,

the MSSW method appears to provide a reliable baseline, or lower bound, for effective

structure, and outperformed empirical heuristics more times than not.

Observing the activity of the upper layer weights also led to the Threshold

stopping criterion for terminating training. This criterion does cut off the training

prematurely at times, but this is partially due to the nature of feed forward neural

networks. The backpropagation gradient search algorithm can get stuck in local

minimums when using smaller middle layer structures.

Combining the MSSW method and the Threshold stopping criterion with SNR

feature selection provides a decrease in training time. However, the decrease in training

time does come at a cost. By removing “non-salient” features from the model,

performance tends to decrease and become more volatile. Taking this method one step

further and applying the general ensemble method removes this volatility from the results

and can yield even higher validation accuracy.

77

5.2. Future Work

The current process of the MSSW method requires multiple trainings of each

network size. Conducting this process in a single training run, by adding hidden layer

neurons during training, would decrease time to perform the MSSW method.

78

Appendix A.

Regression for stopping criterion

The two values of interest are:

• Value of %CHNG when max validation accuracy during training occurs
• Training epoch where max validation accuracy during training occurs

These two values were recorded for multiple data sets and structures. The different

networks structures tested are listed in the table below.

Regression Network Setups

 Data Set Features
Data Points
(Exemplars) Lower Bound

Upper
Bound Outputs

Finance 7 25 3 12 3
XOR 2 150 3 7 2

Hot Dog 5 54 2 10 3
Body Fat 13 252 2 6 2

Owl Problem 4 179 2 10 7

For each data set, different sized middle layers are used. The lower bound and

upper bound columns correspond to the different sizes. For example, the Finance Data

set is trained separately with middle layers including: 3, 4, 5, 6… 12 middle layer

neurons. Five replicates of each setting are run. Also, all network structure with only 1

middle neuron and some with 2 middle neurons were removed, because these

configurations did not lead to a successful neural network. Successful implies that the

validation accuracy be higher than a random guess. Each network is trained to a point

where overtraining is occurring. For a given network, the validation accuracy of the

network is recorded after each training epoch, so the max validation accuracy can be

recorded.

79

% CHNG Regression Results

When conducting the regression on the %CHNG value, a Box Cox transformation

is utilized due to concerns over the residuals’ non-constant variance in the initial

regression model.

CHNG Regression Model

80

The output includes the ANOVA, R-Square values, and parameter estimates for

the model. The Adj. R-Square of .6808 seems promising. There is a large amount of the

variance in the %CHNG variable termination value accounted for by the model.

However, the model is hard to interpret because the coefficients are very small. It

appears that the number of features and outputs decrease the %CHNG value to stop

training while the number of middle nodes slightly increases it. Interestingly, the number

of data points did not appear significant in determining the number of training epochs.

When trying to apply the results of this model to data used in this research, inverse

prediction intervals on %CHNG include zero. Also, the estimated value for %CHNG

appears too conservative when using it in practice. This essentially deems the results of

this model ineffective. The goal in conducting a regression is to provide an accurate

estimate of when to stop training, but this falls short in that regard.

Training Epoch Stopped Regression Results

When conducting the regression on the %CHNG value, a Box Cox transformation

is utilized due to concerns over the residuals’ non-constant variance in the initial

regression model.

81

Training epoch Stopped Regression Model

The output includes the ANOVA, R-Square values, and parameter estimates for

the model. The Adj. R-Square of .6741 shows there is a large amount of the variance in

82

the Training epoch Stopped variable accounted for by the model. It appears that the

number of middle and output nodes decrease training epochs, while the number of

features and data points increases training epochs. Interestingly, the number of data

points did not appear significant in determining the number of training epochs. When

trying to apply the results of this model to data used in this research, the resulting values

appear too conservative when used in practice. Unfortunately, this regression is not as

successful as initially hoped.

83

Appendix B. Blue Dart

Artificial neural networks are a statistical tool patterned after the way a human

central nervous system communicates. They have the ability to classify and derive

meaning from data without any previous knowledge of the context or origin of it. This is

important, because an increasingly technical world contains an abundance of separable

data. Neural networks are robust in their application and can discover patterns or trends

that are unnoticeable to a human observer or other computer techniques. These powerful

tools can be used to do anything from classify pixels in an image to separate or better

understand personnel data.

This research provides new techniques to use when implementing neural networks

to classify data. The size of a neural network and the amount of time they are trained for

can affect results. The techniques presented in this work provide an efficient, structured

process for obtaining effective results. For data sets tested thus far, these methods yield

efficient neural network structure in minimal training time. Direct application of the

techniques proposed in this paper can result in better understanding of information in less

time.

Applications of neural networks include terrain classification in aircraft, anomaly

detection in image processing, and target tracking. In all of these realms, decreased

training time of the neural networks provides results in minimal time. As computational

power increases, the use of neural networks for real time analysis will be a powerful asset

in data analysis.

84

Appendix C. Story Board
Using Upper Layer Weights to Efficiently Construct and

Train Feed-forward Neural Networks Executing
Backpropagation

Research Objectives:
• Determine efficient network structure
• Determine an ideal training termination point
• Combine Methods to create an iterative process to construct neural

networks

Combined Method
2d Lt Harmon Gage
Department of Operational

Sciences (ENS)
ADVISOR

Dr. Kenneth Bauer

READER
Dr. J.O. Miller

2
,

1 1
()

I J

i j
i j

w
MSSW

I
= ==
∑∑

Mean Sum of Squared Weights Method (MSSW)

For a middle layer structure
containing I middle layer nodes
and J upper layer nodes, the
MSSW can be calculated as:

Generalized Ensemble Method

1

1

() ()
% 100*

()

i i
j k j k

i j i j
k i

j k
i j

w w
CHNG

w

−

−

−
=

∑∑ ∑∑
∑∑

Select Data
Use MSSW
method to
construct

middle layer

With middle
structure set,
remove non-

salient
features

using SNR
method

MSSW Method Summary: Determine number of middle
layer nodes where max MSSW method occurs
MSSW Method Summary: Determine number of middle
layer nodes where max MSSW method occurs

Max MSSW value
coincides with
efficient network
structure

For a training epoch k, the percent change in the sum of upper layer
weights is observed:

Threshold Stopping Criteria:
Train for minimum of:
1. 1000 Epochs
2. Epoch where %CHNG is less than .025% for 50 consecutive training

epochs

Stochastic nature of
backpropagation algorithm
yields varying results across
multiple runs. Generalized
Ensemble Method fuses
multiple runs to create best
possible classifier.

The combined method integrates the MSSW
method, Threshold Stopping Criteria, and Bauer,
Alsing, & Greene’s SNR feature selection method.
The result is an efficient network structure with
successful performance.

Conclusion

Combined Method Result GEM

Data Set
Avg. Validation

Accuracy (5 Runs)
Std Dev.

Validation
Accuracy

XOR 0.9027 0.0808 0.9189
Body Fat 0.8175 0.0112 0.8254
Finance 0.8833 0.1125 1
Hot Dog 0.6846 0.0568 .6923

Iris 0.9514 0.0279 0.973

Feedforward Neural Network:
“An important statistical tool for classification. They can adjust

themselves to data without any prior knowledge of the input data.
Can approximate any function with arbitrary accuracy. “
(Zhang G. P., 2000)

Threshold Stopping Criteria

Q: Why use %CHNG observation?
A: As %CHNG settles, validation accuracy
also settles

Data Set MSSW Threshold Combined GEM

XOR
Body Fat Success
Finance Mild Success
Hot Dog No Success

Iris

Success- Efficient or Pareto-Optimal
Mild Success- Realistic trade off in structure size/epochs vs. performance
No Success- Unrealistic trade off in structure size/epochs vs. performance
Results are compared to existing heuristics

85

Bibliography

Bacauskine, M., & Verikas, A. (2004). Selecting salient features for classification based
on neural network committees. Pattern Recognition Letters , 25, 1879-1891.

Bauer, K. W., Alsing, S. G., & Greene, K. A. (2000). Feature screening using signal-to-
noise ratios . Neurocomputing , 29-44.

Baum, E., & Haussler, D. (1989). What sized net gives valid generalization? Neural
Computation , 1 (1), 151-160.

Bebis, G., & Georgiopoulos, M. (1994). Feed-forward neural networks: Why network
size is so important. IEEE Potentials , 27-31.

Belue, L., & Bauer, K. (1995). Methods of determining input features for multilayer
perceptrons. Neurocomputing , 7 (2), 111-121.

Belue, L., Steppe, J., & Bauer, K. (April 1996). Multivariate statistical techniques for
determining neural network architecture and data requirements. AISB96 Workshop
Tutorial Programme. Brighton, U.K.

Cancelliere, R. (2003). Data Processing and Feature Screening in Function
Approximation: An Application to Neural Networks. Computer & Mathematics with
applications , 46, 455-461.

Caudill, M., & Butler, C. (1992). Understanding neural networks: Computer
explorations. Cambridge: MIT Press.

Cover, T. (1965). Geometrical and statistical properties of systems of linear inequalities
with applications in pattern recognition. IEEE Trans. Elec. Comp. , EC-14, 326-334.

Cybenko, G. (1988). Continuous valued neural networks with two hidden layers are
sufficient. Tufts University : Department of Computer Science.

Daqi, G., & Shouyi, W. (1998). An optimization method for the topological structures of
feed-forward multi-layer neural networks. Pattern Recognition , 1337-1342.

Dillon, W., & Goldstein, M. (1984). Multivariate Analysis: Methods and Applications .
New York: John Wiley & Sons, Inc.

Fahlman, S., & Lebiere, C. (1990). The Cascade-Correlation learning architecture.
Advances in Neural Information Processing Systems II , 524-532.

Fanguy, R., & Kubat, M. (2002). Modifying Upstart for Use in Multiclass Numerical
Domains. FLAIRS, (pp. 339-343).

Frean, M. (1990). The Upstart Algorithm: A Method for Constructing and Training.
Neural Computation , 2, 198-209.

Gao, P., Chen, C., & Qin, S. (2010). An Optimization Method of Hidden Nodes for
Neural Network. 2010 Second International Workshop on Education Technology and
Computer Science (pp. 53-56). Hubei, China: IEEE.

86

Gorman, P. R., & Sejnowski, T. (1988). Analysis of Hidden Units in a Layered Network
Trained to Classify Sonar Targets. Neural Networks , 75-89.

Guler, I., & Ubeyli, E. D. (2005). Feature saliency using signal-to-noise ratios in
automated diagnostic systems developed for ECG beats . Expert Systems with
Applications , 295-304.

Huang, G.-B., & Babri, H. A. (1998). Upper Bounds on the Number of Hidden Neurons
in Feedforward Networks with Arbitrary Bounded Nonlinear Activation Functions.
Transactions on Neural Networks , 224-229.

Ileana, I., Rotar, C., & Incze, A. (2004). The Optimization of Feed Forward Neural
Networks Structure Using Genetic Algorithms. International Conference on Theory and
Applications of Mathematics and Informatics, (pp. 223-234). Thessaloniki, Greece.

Kavzoglu, T. (1999). Determining Optimum Structure for Artificial Neural Networks.
25th Annual Technical Conference and Exhibition of the Remote Sensing Society.
Cardiff, UK.

Kocur, C., Roger, S., Myers, L., Burns, T., Hoffmeister, J., Bauer, K., et al. (1996). Using
neural networks to select wavelet features for breast cancer diagnosis. IEEE Trans.
Neural Networks , 15 (3), 95-102.

Kurkova, V. (1992). Kolmogorov's thorem and multilayer neural networks. Neural
Networks , 5 (3), 501-506.

Kurkova, V. (1992). Komogorov's thorem and multilayer neural networks. Neural
Networks , 5 (3), 501-506.

Law, A. M. (2007). Simulation Modeling & Anlaysis (4th ed.). New York, NY: McGraw
Hill.

Lippmann, R. P. (1987). An Introduction to Computing with Neural Nets. IEEE ASSP
Magazine , 3 (4), 4-22.

Mahajan, P. S., & Ingalls, R. G. (2004). Evaluation Of Methods Used To Detect Warm-
Up Period In Steady State Simulation. Winter Simulation Conference (pp. 663-671).
Stillwater: OK.

Mirchandani, G., & Cao, W. (1989). On Hidden Nodes for Neural Nets. IEEE
Transactions on Circuits and Systems , 661-664.

Parekh, R., Yang, J., & Honavar, V. (2000). Constructive Neural-Network Learning
Algorithms for Pattern Classification. IEEE Transactions on Neural Networks , 11 (2),
436-451.

Perrone, M. P., & Cooper, L. N. (1992). When Networks Disagree: Ensemble Methods
for Hybrid Neural Networks. Providence, RI : Chapman-Hall.

Prechelt, L. (1998). Early Stopping - But When? In G. Orr, & R. Muller, Neurlan
Networks: Tricks of the Trade (pp. 55-69). Springer-Verlag Berlin Heidelberg.

Reed, R. (1993). Pruning Algorithms - A Survey. IEEE Transactions on Neural Networks
, 740-746.

87

Sartori, M. A., & Antsaklis, P. J. (1991). A Simple Method to Derive Bounds on the Size
and to train Multilayer Neural Networks. IEEE Transactions on Neural Networks , 467-
471.

Setiono, R., & Liu, H. (1997). Neural-Network Feature Selector. IEEE Transactions on
Neural Networks , 8 (3), 654-662.

Sietsma, J., & Dow, R. J. (1991). Creating Artificial Neural Networks That Generalize.
Neural Networks , 4, 67-79.

Sontag, E. (1992). Feedforward nets for interpolation and classification. J. Comp. Syst.
Sci. , 45, 20-48.

Sprinkhuizen-Kuyper, I. G., & Boers, E. J. (1999). A Local Minimum for the 2-3-1 XOR
network. IEEE TRANSACTIONS ON NEURAL NETWORKS , 10 (4), 968-971.

Steppe, J. M. (1994). Feature and Model Selection in Feedforward Neural Networks.
Wright-Patterson AFB, OH: AFIT.

Steppe, J. M., Bauer, K. W., & Rogers, S. K. (1996). Integrated Feature and Architecture
Selection. IEEE Transacations on Neural Networks , 1007-1014.

Steppe, J., & Bauer, K. (1996). Improved feature screening in feedforward neural
networks. Neurocomputing , 13, 47-58.

Svozil, D., Kvasnicka, V., & Jiri, P. (1997). Tutorial Introduction to multi-layer feed-
forward neural networks. Chemometrics and Intelligent Laboratory Systems , 43-62.

Tarr, G. (1991). Multilayered feeforward neural networks for image sementation. Ph.D.
Dissertation .

Teoh, E. J., C, T. K., & Xiang, C. (2006). Estimating the Number of Hidden Neurons in a
Feedforward Network Using the Singular Value Decomposition. IEEE Transactions on
Neural Networks , 1623-1629.

Ubeyli, E. D. (2008). Measuring saliency of features extracted by model-based methods
from internal carotid arterial Doppler signals using signal-to-noise ratios. Digital Signal
Processing , 18, 2-14.

Ubeyli, E. D. (2008). Measuring Saliency of Features Using Signal-to-noise Ratios for
Detection of Electrocardiographic Changes in Partial Epileptic Patients. Journal of
Medical Systems , 32 (6), 463-470.

Vapnik, V., & Chervonenkis, A. (1971). On the convergence of relative frequencies of
events to their probabilities. Theory Probab. Its Appl. , 16 (2), 264-280.

Verikas, A., & Bacauskiene, M. (2002). Feature selection with neural networks. Pattern
Recognition Letters , 23, 1323-1335.

Welch, P. (1981). On the Problem of the Initial Transient in Steady-State Simulation.
Yorktown Heights, New York: IBM Watson Research Center.

White, H. (1993). Artificial Neural Networks Approximation & Learning Theory.
Cambridge, USA: Blackwell Publishers.

88

Yang, J., & Honavar, V. (1991). Experiments with the Cascade-Correlation Algorithm.
Ames, IA: Iowa State University Department of Computer Science.

Zhang, G. P. (2000). Neural Networks for Classification: A Survey. IEEE Transactions
on Systems, Man, and Cybernetics , 451-462.

Zhang, L., Jiang, J.-H., Liu, P., Liang, Y.-Z., & Yu, R.-Q. (1997). Multivariate nonlinear
modelling of flourescence data by neural network with hidden node pruning algorithm.
Analytica Chimica Acta , 29-39.

89

Vita

Second Lieutenant Harmon John Ambrose Gage graduated from Bob Jones High

School in Madison, Alabama in 2005. He entered undergraduate studies at the United States

Air Force Academy in Colorado Springs, Colorado where he graduated with a Bachelor of

Science degree in Operation Research in May 2009 and received his commission as an Air

Force Officer. In August 2009, he entered the Graduate School of Engineering and

Management, Air Force Institute of Technology. Upon graduation, he will be assigned to the

36th Electronic Warfare Squadron at Eglin AFB, FL.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public report ing burden for this collect ion of informat ion is est imated to average 1 hour per response, including the t ime for review ing instruct ions, searching exist ing data
sources, gathering and maintaining the data needed, and complet ing and review ing the collect ion of informat ion. Send comments regarding this burden est imate or any other
aspect of the collect ion of informat ion, including suggest ions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operat ions and Reports (0704-0188), 1215 Jef ferson Davis Highw ay, Suite 1204, Arlington, VA 22202-4302. Respondents should be aw are that notw ithstanding any other
provision of law , no person shall be subject to an penalty for failing to comply w ith a collect ion of informat ion if it does not display a current ly valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

24-03-2011
2. REPORT TYPE

Graduate Research Project
3. DATES COVERED (From – To)

Sep 2009 – Mar 2011
4. TITLE AND SUBTITLE

 USING UPPER LAYER WEIGHTS TO EFFICIENTLY CONSTRUCT AND TRAIN
FEEDFORWARD NEURAL NETWORKS EXECUTING BACKPROPAGATION

5a. CONTRACT NUMBER
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Gage, Harmon, J.A., 2d Lt, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Street, Building 642
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT-OR-MS-ENS-11-06

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NASIC/DAIA
Attn: John Jacobson
4180 Watson Way
Wright-Patterson AFB OH 4533-5648

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Feed-forward neural networks executing back propagation are a common tool for regression and pattern recognition problems. These types of
neural networks can adjust themselves to data without any prior knowledge of the input data. Feed-forward neural networks with a hidden layer can
approximate any function with arbitrary accuracy.

In this research, the upper layer weights of the neural network structure are used to determine an effective middle layer structure and when to
terminate training. By combining these two techniques with signal-to-noise ratio feature selection, a process is created to construct an efficient neural
network structure. The results of this research show that for data sets tested thus far, these methods yield efficient neural network structure in minimal
training time. Data sets used include an XOR data set, Fisher’s Iris problem, a financial industry data set, among others.

15. SUBJECT TERMS
Neural Network, Hidden Layer, Feed-Forward, Backpropagation, Training Epochs, SNR feature selection
16. SECURITY CLASSIFICATION OF: 17.

LIMITATION
OF
ABSTRACT

UU

18.
NUMBER
 OF
PAGES

102

19a. NAME OF RESPONSIBLE PERSON
Dr. Kenneth W. Bauer (ENS)

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4631; e-mail: Kenneth.Bauer@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Abstract
	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	1. Introduction
	1.1. Background
	1.2. Problem Statement
	1.3. Research Objectives

	2. Literature Review
	2.1. Definitions
	2.2. Feed-Forward Neural Network
	2.3. Backpropagation
	2.4. Constructive and Pruning Algorithms
	2.4.1. Upper bound on hidden nodes for pruning algorithms
	2.4.2. Lower bound on hidden nodes for constructive algorithms

	2.5. Empirical Formulas
	2.6. Terminating Training
	2.6.1. Generalization Loss Threshold

	2.7. Feature Selection
	2.7.1. Likelihood ratio test statistics
	2.7.2. Weight Based Saliency Measures
	2.7.3. Signal to Noise Ratio (SNR) Saliency measure
	2.7.4. Other Methods

	2.8. General Ensemble Method
	2.8.1. Introduction

	3. Methodology
	3.1. Introduction
	3.2. Efficient Structure Using Upper Layer Weights
	3.2.1. Sum of Squared Weights (SSW)
	3.2.2. Mean Sum of Squared Weights (MSSW)
	3.2.3. MSSW Method

	3.3. Sufficiently Training an ANN
	3.3.1. Sum of Weights
	3.3.2. Incremental Change in Sum of Weights
	3.3.3. Percentage Change in Sum of Weights
	3.3.4. Threshold stopping criterion

	3.4. Combining Structure Selection, Feature Selection, and Training Termination Methods

	4. Results
	4.1. Introduction
	4.2. Mean Sum of Squared Weights (MSSW)
	4.2.1. XOR Problem
	4.2.2. Body Fat Data Set
	4.2.3. Finance Industry Data Set
	4.2.4. Hot Dog Data Set
	4.2.5. Summary

	4.3. Sufficiently Training a Neural Network
	4.3.1. Introduction
	4.3.2. XOR Data Set/Discussion of Data Analysis
	4.3.4. Finance Data Set
	4.3.5. Hot Dog Data Set
	4.3.6. Body Fat Data Set
	4.3.7. Summary

	4.4. Regression Equation for Stopping Training
	4.4.1. Introduction

	4.5. Combining Methods
	4.5.1. Introduction
	4.5.2. Metrics Used
	4.5.3. Fisher’s Iris Data Set
	4.5.4. Body Fat Data Set
	4.5.5. Finance Data Set
	4.5.6. Hot Dog Data Set
	4.5.7. Summary

	4.6. Generalized Ensemble Method
	4.6.1. Introduction
	4.6.2. GEM Application

	5. Conclusion/Future Work
	5.1. Conclusion
	5.2. Future Work

	Appendix A.
	% CHNG Regression Results
	Training Epoch Stopped Regression Results

	Appendix B. Blue Dart
	Appendix C. Story Board
	Bibliography
	Vita

